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Introduction  
 
 
1.  Purpose.   
 
 a. This AC provides updated guidance for the flight test evaluation of transport category 
airplanes.  These guidelines provide an acceptable means of demonstrating compliance with the 
pertinent regulations of Title 14, Code of Federal Regulations (14 CFR) part 25.  The methods 
and procedures described herein have evolved through many years of flight testing of transport 
category airplanes and, as such, represent current certification practice.  This AC is not 
mandatory and does not constitute a regulation.  It describes acceptable means, but not the only 
means, for demonstrating compliance with the applicable regulation(s).  The FAA will consider 
other methods of demonstrating compliance that an applicant may elect to present.  If we become 
aware of circumstances that convince us that following this AC would not result in compliance 
with the applicable regulations, we will not be bound by the terms of this AC, and we may 
require additional substantiation or design changes as a basis for finding compliance.  This 
material does not change, create any additional, authorize changes in, or permit deviations from 
existing regulatory requirements.   
 
 b. See Appendix 1 for a list of acronyms and abbreviations used in this AC.  
 
2. Applicability.   
 
These methods and procedures are provided in the interest of certification approval for use 
during all transport category airplane flight test certification activities.  This material is not to be 
construed as regulatory or having a mandatory effect.  The procedures set forth herein are one 
acceptable means of compliance with applicable sections of part 25.  Any alternative means 
proposed by the applicant should be given due consideration.  Applicants are encouraged to use 
their technical ingenuity and resourcefulness in order to develop more efficient and less costly 
methods of complying with the requirements of part 25.  Since these methods and procedures are 
only one acceptable means of compliance, individuals should be guided by the intent of the 
methods provided in this AC.  As deviations from the methods and procedures described in this 
AC may occur, FAA certification personnel will coordinate what they consider to be major 
deviations with the Transport Standards Staff (ANM-110) of the Transport Airplane Directorate.  
If in their judgment, however, a deviation is considered to be minor, coordination with ANM-
110 may not be necessary. 
 
3. Cancellation.   
 
AC 25-7B, Change 1, “Flight Test Guide for Certification of Transport Category Airplanes,” 
dated December 7, 2011, is cancelled.  
 
4. Background.   
 
 a. Since AC 25-7 was released on April 9, 1986, it has been the primary source of 
guidance for flight test methods and procedures to show compliance with the regulations 
contained in subpart B of part 25, which address airplane performance and handling 

1    
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characteristics.  AC 25-7 has been revised several times to reflect changes in the part 25 
regulatory requirements, changes in guidance and policy, and advances in technology.   
 
 b. The first revision, AC 25-7A, updated the original AC to incorporate the policy and 
guidance material applicable to all sections of part 25, not just subpart B.  The material related to 
regulations outside of subpart B superseded that contained in Order 8110.8, which was cancelled 
when AC 25-7A was issued.   
 
 c. Change 1 to AC 25-7A added acceptable means of compliance for the regulatory 
changes associated with amendments 92 and 98 to part 25.   
 
 d. AC 25-7B added acceptable means of compliance for the regulatory changes associated 
with amendments 108, 109, and 115 to part 25, and revised guidance for expanding takeoff and 
landing data for airport elevations higher than those at which flight testing was conducted.  
Means of compliance associated with flight in icing conditions were removed as this material is 
now contained in AC 25-25.   
 
 e. Change 1 to AC 25-7B added acceptable means of compliance for the regulatory 
changes associated with amendment 25-135.  
 
 f. This revision, AC 25-7C, is a complete revision to reduce the number of differences 
from the European Aviation Safety Agency’s Flight Test Guide, provide acceptable means of 
compliance for the regulatory changes associated with amendments 107, 109, 113, 115, 119 and 
123 to part 25, to respond to FAA and National Transportation Safety Board safety 
recommendations, and to provide a general update to reflect current FAA and industry practices 
and policies.  
 
5. Related Publications.    
 
Certification personnel should be familiar with FAA Order 8110.4C, “Type Certification,” and 
FAA Order 8100.5A, “Aircraft Certification Service Mission, Responsibilities, Relationships, 
and Programs.”  In this AC, reference is made to other FAA ACs that provide guidance on 
various aspects of type certification and supplemental type certification. 
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Chapter 1 - General  
 
1. Applicability - § 25.1.  [Reserved]  
 
2. Special Retroactive Requirements - § 25.2.  [Reserved] 
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Chapter 2 - Flight 

 
Section 1.  General 

 
3. Proof of Compliance - § 25.21.  
 
 a. Explanation.  In an effort to provide the necessary guidelines for the flight test 
evaluation of transport category airplanes, without producing a cumbersome document, this AC 
assumes a conventional transport airplane configuration.  In general, a conventional airplane 
configuration is one with distinct wing and fuselage elements that are joined together, aft-
mounted horizontal and vertical stabilizers that are attached to the fuselage, and propulsion 
provided either by turbojet/turbofan engines that do not provide any significant increase in lift 
due to their operation or engine-driven propellers.  The effects of non-conventional airplane 
configurations (e.g., blown flaps) on the compliance methods should be evaluated and 
determined based on the intent of the guidelines presented for conventional airplane 
configurations.   
 

 (1) Section 25.21(a) - Proof of Compliance.  
 

   (a) The burden of showing compliance with the flight requirements for an 
airworthiness certificate or a type certificate rests with the applicant.  The applicant should, at his 
own expense and risk, conduct such official flight tests as required by the FAA to demonstrate 
compliance with the applicable requirements.  During the certification process, the applicant 
should make available the airplane, as well as all of the personnel and equipment necessary to 
obtain and process the required data.  

 
(b)   If the airplane flight characteristics or the required flight data are affected by 

weight and/or center of gravity (c.g.), the compliance data must be presented for the most critical 
weight and c.g. position per § 25.21(a).  Unless the applicant shows that the allowable c.g. travel 
in one or more axes (e.g., lateral fuel imbalance) has a negligible effect on compliance with the 
airworthiness requirements, the applicant must substantiate compliance at the critical c.g. 

 
(c)   The gross weight and c.g. tolerances specified in paragraphs 3a(3)(b)1 and 3 

are test tolerances and are not intended to allow compliance to be shown at less than critical 
conditions. 

 
(d)   Section 21.35(a)(3) requires that the test airplane be in conformity with its 

type design specifications.   
 

1   This means that the test airplane must be in conformity with its type 
design specification as relates to the particular test being conducted. 

 
2   Any deviation from conformity must be clearly shown to be of no 

consequence to the particular test being conducted.  For example, if the slip resistant escape 
surface required by § 25.810(c) is not installed when conducting airplane performance and flight 

 4 
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characteristics tests, the applicant must show that its presence would have no effect on measured 
airplane performance and flight characteristics. 

 
   (e)  Section 21.35(b)(2) requires the applicant to conduct sufficient flight testing 
the FAA finds necessary to determine whether there is reasonable assurance that the airplane, its 
components, and its equipment are reliable and function properly.  Appendix 2 to this AC 
provides guidance for showing compliance with this requirement. 
 

(f) Acceptable use of simulation in lieu of flight testing.  It is difficult to establish 
guidance for using simulation in lieu of flight testing that applies in all situations.  However, the 
following general principles can be used as guidance for determining the acceptability for using 
simulation in lieu of flight testing:  
 

1   In general, flight test demonstrations are the preferred method to show 
compliance.  
 

2   Simulation may be an acceptable alternative to flight demonstrations in 
certain situations, such as the following:  
 
     (aa) A flight demonstration would be too risky even after attempts are 
taken to mitigate these risks (e.g., by mock takeoffs/landings in the air at a safe altitude); 
 
     (bb)  The required environmental or airplane conditions are too difficult 
to attain, such as in the examples listed below: 
 
      (i)  validation of system safety analyses failure cases involving high 
crosswinds, 
 
      (ii)  development of crosswind guidance for slippery runway 
operations; and 
 
      (iii)  conditions involving minimum allowable weight where the 
minimum allowable weight cannot be achieved because of the weight of required test equipment.  
In this case, simulation data can be used to supplement flight test data obtained at the minimum 
practicable test weight. 

 
 

(cc) The simulation is used to augment a reasonably broad flight test 
program; or  
 

(dd) The simulation is used to demonstrate repeatability, or to 
demonstrate performance of a specific scenario for a range of pilots.  
 
    3 Simulation Criteria.  If it is agreed that a simulation will be used to 
establish compliance, to be acceptable for use in showing compliance with the performance and 
handling qualities requirements, the simulation should:  

 5 
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     (aa) Be of a type and fidelity that is appropriate for the task.  For 
example, is motion or an exterior view needed, or is the fidelity or customizability of an 
engineering simulator needed? 
 
     (bb) Be suitably validated by flight test data for the conditions of interest.  
 
      (i) This does not mean that there must be flight test data at the 
exact conditions of interest.  The reason simulation is being used may be that it is too difficult or 
risky to obtain flight test data at the conditions of interest. 
 
      (ii)   The level of substantiation of the simulator to flight correlation 
should be commensurate with the level of compliance (i.e., the closer the case is to being non-
compliant, the higher the required fidelity of the simulation).  
 
     (cc) Be conducted in a manner appropriate to the case and conditions of 
interest.  
 
      (i)   If closed-loop responses are important, the simulation should 
be piloted by a human pilot.  
 
      (ii)   For piloted simulations, the controls/displays and cues should be 
substantially equivalent to what would be available in the real airplane (unless it is determined 
that not doing so would provide added conservatism).  
 

(2)   Section 25.21(c) - Proof of Compliance (Altitude Effect on Flight Characteristics).  
 

(a)   Any of the flying qualities affected by altitude, including controllability, 
stability, trim, and stall characteristics, must be investigated at the most adverse altitude 
conditions approved for operations.  

 
(b)   Consideration should be given in the test program to any aerodynamic control 

system changes that occur with changes in altitude (e.g., maximum control surface displacement 
or auto slats that may be inhibited by Mach number above a specific altitude). 
 

(3)  Section 25.21(d) - Proof of Compliance (Flight Test Tolerances). 
 

(a)  To allow for variations from precise test values, acceptable tolerances during 
flight testing must be maintained.  The purpose of these tolerances is to allow for small 
variations in flight test values of certain variables from the targeted value.  They are not intended 
for compliance tests to be planned for other than the critical condition, nor are they to be 
considered as an allowable measurement error.   

 
(b)   Where variation in the parameter for which a tolerance is allowed will have an 

effect on the results of the test, the results should be corrected to the most critical value of that 
parameter within the approved operating envelope.  If such a correction is impossible or 
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impractical, the average test conditions should assure that the measured characteristics represent 
the actual critical value.  
 

1   Weight limits.  Figure 3-1, below, presents weight tolerances that have 
been found acceptable for the specified flight tests.  Many flight tests need to be conducted at or 
very near the maximum operating weight for the airplane configuration, particularly those tests 
used to establish airplane flight manual (AFM) performance information.  As noted in paragraph 
(a) above, the purpose of the test tolerances is to allow for variations in flight test values, not to 
routinely schedule tests at less than critical weight conditions or to allow for compliance to be 
shown at less than the critical weight condition.  In addition, the tolerances can be used to help 
determine when to interrupt a series of test conditions in order to refuel the airplane if necessary 
to remain within the acceptable weight tolerance. 
 

Figure 3-1.  Weight Tolerance Limits 
 

Flight Test Conditions Weight 

Tolerance Limit 

 ±5% ±10% 

Stall Speeds X  

Stall Characteristics  X 

All Other Flight Characteristics  X 

Climb Performance X  

Takeoff Flight Paths X  

Landing Braking Distance X  

Landing Air Distance X  

Takeoff Distance & Speed X  

Accelerate-Stop Distance X  

Maximum Energy RTOs X  

Minimum Unstick Speed  X 

Minimum Control Speed X  

 
NOTE: A -5 percent tolerance limit means that the weight for the particular test 
may be up to 5 percent less than the test target value.  A +5 percent tolerance limit 
means that the weight for the particular test may be up to 5 percent higher than 
the test target value. 

 
     (aa) It can be difficult or impossible to conduct testing at the airplane’s 
minimum allowable weight with an airplane configured for conducting a flight test program.  If 
the minimum weight cannot be obtained (within the specified tolerance limit) and compliance at 
the minimum weight cannot be clearly deduced from the results at the tested weight, the testing 
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should be conducted on a production airplane (or other airplane on which the minimum weight 
can be obtained).  If the instrumentation or equipment needed to conduct safe testing cannot be 
installed on the production airplane configuration, or the weight of such instrumentation still 
prevents the minimum weight from being obtained, consider the use of simulation to extend the 
results obtained at the minimum practical test weight.  (See paragraph 3a(1)(f).) 
 

   (bb)  For follow-on airplane certification programs involving an increase 
in the maximum allowable gross weight, the test weight limits of Figure 3-1 have been applied as 
extrapolation limits on the original test data in order to minimize additional testing.  For the test 
weight tolerance limits to be applied in this manner, the original test data must be from an 
existing certificated database for an aerodynamically similar model of the same airplane type.  
The tolerance limit should be applied to the maximum weight at which the original testing was 
conducted, not to the maximum certified weight. 

 
   (cc)  Equivalent weight extrapolation limits.  For follow-on airplane 

certification programs where it is desired to increase a maximum operating weight based on 
existing certified performance parameters that have weight as one of their independent terms, 
those parameters should be examined for equivalent compliance with the weight tolerance limits 
of Figure 3-1.  An example would be the reduction of an airplane’s landing flap position, to one 
approved on a similar model of the same airplane type, which would incur an increase in landing 
speeds and brake energy, relative to the original certificated landing flap, at any given weight.  
The brake energy, at the maximum certificated landing weight, should be calculated for the 
reduced landing flap.  This brake energy should account for the increased landing speeds and 
reduced aerodynamic drag associated with the reduced flap setting.  It should then be determined 
what equivalent gross weight would have rendered that brake energy with the original landing 
flap.  (See Figure 3-2 for an example of how this can be done.)  If the resulting equivalent gross 
weight does not exceed the certificated maximum landing weight by more than the five percent 
weight extrapolation limit specified in Figure 3-1, the reduced flap certification may be eligible 
for a reduced flight test program (e.g., limited to stall speed verification, handling characteristics, 
and a qualitative landing demonstration).  Further limitations may be imposed by the criteria of 
technical standard order (TSO) C135a (“Transport Airplane Wheels and Wheel and Brake 
Assemblies,” dated July 1, 2009). 
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Figure 3-2.  Equivalent Weight Extrapolation 

 

∆  G.W. Not greater than 5%

Gross Weight - Pounds

∆ KE

Ori g inal
Reduced

 
 

2   Wind Limits.  A wind velocity limit of 10 knots (from any direction) or 
0.11 VSR1 (whichever is lower) is considered the maximum acceptable for obtaining valid takeoff 
and landing flight test data.  Takeoff and landing performance data obtained under runway wind 
conditions greater than 5 knots may be inconsistent and unreliable because winds of that 
magnitude are likely to be unsteady.  However, performance data obtained with winds between 5 
and 10 knots should not necessarily be discarded.  Their validity should be checked against data 
obtained in conditions with lesser winds.  Wind velocity should be measured at the height of the 
wing mean aerodynamic chord (MAC), as determined with the airplane in a static ground 
attitude.  When measuring test wind velocity at the wing MAC height, a height of six feet above 
the ground should be considered as a minimum measurement height to avoid possible 
measurement inaccuracies due to surface interference. 

 
3   C.G. Limits.  A test tolerance of +7 percent of the total c.g. range is 

intended to allow for inflight c.g. movement.  This tolerance is only acceptable when the test 
data scatter is on both sides of the limiting c.g. or when adjusting the data from the test c.g. to the 
limit c.g. is acceptable.  If compliance with a requirement is marginal at a test condition that is 
inside of the c.g. limits, the test should be repeated at the c.g. limits. 

 
4   Airspeed Limits.  Normally, tests conducted within 3 percent or 3 knots 

(whichever is the higher) of the desired test speed are considered acceptable. 
 
5   Thrust/Power Limits.  Thrust critical tests, such as minimum control 

speeds, should be conducted at the highest thrust (or power) allowable on the engine given the 
constraints of temperature and altitude.  It is then permitted to calculate further corrections to 
allow extrapolation of data to cover the entire operating envelope.  These thrust (or power) 
corrections should be limited to 5 percent of test day thrust (or power), unless a detailed analysis 
is performed. 
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(c)   It is not the purpose of these tolerances to allow flights at values in excess of 
those authorized in the type design.  If such flights are to be conducted, adequate structural 
substantiation for the flight conditions should be available.  These flights should always be 
conducted under controlled conditions and with the flight test crew’s full knowledge of the 
situation.  Examples of such flights are:  
 

1   Takeoff at greater than maximum takeoff weight to reach a test area at the 
maximum takeoff weight.  

 
2   Landing at greater than maximum landing weights during the course of 

conducting takeoff tests. 
 
3   Flights to obtain data for future approvals beyond that substantiated for 

the initial type design. 
 

(d)   The table in Figure 3-3 indicates the cases for which corrections are normally 
allowed.  Any corrections to flight test data should be made by methods that are agreed to by the 
FAA. 
 

Figure 3-3.  Test Parameters That Normally Can Be Corrected 
 

Flight Test 

Condition 

Correctable Parameters 

 Wt. C.G. Airspeed Altitude Power/ 

Thrust 

Wind 

Airspeed calibration X --- --- --- --- --- 

Stall speeds X X --- ---  X --- 

Climb performance X X X X X --- 

Landing performance X --- X X --- X 

Takeoff performance X X --- X X X 

Accelerate-stop perf. X X --- X X X 

Minimum control speed --- --- --- --- X --- 

Minimum unstick speed X X X --- X --- 

Buffet boundary X X --- X --- --- 
 

(e)   All instrumentation used in the flight test program should be appropriately 
calibrated and acceptable to the FAA test team.  
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(4)   Section 25.21(f)  -  Proof of Compliance (Wind Measurement and Corrections).  
The relationship between the wind measured at one height and the corresponding wind at another 
height may be obtained by the following equation:  
 

VW2  =  VW1(H2/H1)
1/7 

 
Where:   H      =  Height above the runway surface  

 VW2  =  Wind velocity at H2 
 VW1  =  Wind velocity at H1 

 
This equation is presented graphically below.  Values of H less than 5 feet should not be used in 
this relationship. 
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Figure 3-4.  Wind Profile Variation 
 
 

(5)   Wind Profile Variation for Test Data.  The performance data of airplanes should be 
obtained in such a manner that the effect of wind on the test data may be determined.  The test 
wind velocity should be corrected from the recorded height above the test surface to the height of 
the airplane wing mean aerodynamic chord.  If the wind profile variation is not measured, the 
variation may be calculated using the equation in paragraph (4) above.  The following examples 
are methods of handling wind profile variation data.  Other methods have also been found 
acceptable.  
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Example:  Test Data  
 

Given: 
 
o Height of mean-aerodynamic-chord with airplane on surface  8.0  ft.  
o Height of wind measurement    6.0  ft.  
o Measured wind velocity    4.8  kts.  
 
Results: 
 
o Test wind velocity with airplane 50 ft. above landing surface  
        4.8((50 + 8)/6)1/7 =   6.6  kts. 
 
o Test wind velocity with airplane 35 ft. above takeoff surface  
        4.8((35 + 8)/6)1/7 =   6.4  kts.  
 
o Test wind velocity with airplane on surface  
        4.8(8/6)1/7 =    5.0  kts.  

 
(6)  Wind Profile Variation for AFM Data.  When expanding the data to the AFM 

conditions, the result should include the effective velocity, at the airplane’s wing mean 
aerodynamic chord, which corresponds to the wind condition as measured at 10 meters (32.81 
ft.) above the takeoff surface, and corrected for the wind factors of § 25.105(d)(1). 
 

Example:  AFM Data  
 
Given:  
 
 o  Height of mean aerodynamic chord with airplane on surface               8.0  ft.  
 o  Reported headwind at 10 meters                 40.0  kts.  
 o  Section 25.105(d)(1) wind factor                   0.5 
 
Results: 
 
o Factored wind velocity with airplane 50 ft. above landing surface  
 
        (0.5)(40)((50 + 8)/32.81)1/7 = 21.7  kts.  
 
o Factored wind velocity with airplane 35 ft. above takeoff surface  
 
        (0.5)(40)((35 + 8)/32.81)1/7 = 20.8  kts.  
 
o Factored wind velocity with airplane on surface  
 
         (0.5)(40)(8/32.81)1/7 = 16.3  kts.  
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(7)   Airplane Airspeed Variation Due to Wind Profile Variation Combined With Speed 
Changes Due to Airplane Dynamic Performance.  In the reduction of test data and in the 
expansion of such data to AFM conditions, the increase or decrease of speed due to the dynamic 
effect of the forces on the airplane are shown only by the change in ground speed.  These 
changes in ground speed may be generalized either as speed increments or speed ratios.  The 
changes in airspeed due to wind profile variation are superimposed on these speed changes.  
 

Example:  Determination of True Airspeed from Ground Speed -- Takeoff Test Data  
 
Given:  
 
 o Ground speed at liftoff, VLOF                139.0 kts.  
 o Ground speed at 35 ft. above takeoff surface              140.6 kts.  
 o Speed change due to airplane dynamic performance      1.6 kts.  
 o Test headwind at liftoff         5.0 kts.  
 o Test headwind with airplane 35 ft. above takeoff surface      6.4 kts.  

 
Results: 
 
 o True airspeed at liftoff, VLOF   139.0 + 5.0 =   144.0 kts. 
 o True airspeed at 35 ft. above takeoff surface 140.6 + 6.4      147.0 kts.  
 
Example:  Determination of Rotation Speed from True Airspeed at 35 ft. Height -- AFM 
Data  

 
Given:   
 
o Factored headwind at liftoff       16.3 kts.  
o Factored headwind with airplane 35 ft. above takeoff surface    20.8 kts.  
o Ground speed change, (V35-VLOF)         1.6 kts.  
o Ground speed change, (VLOF-VR)         0.5 kts.  
o True airspeed required at 35 ft.     150.0 kts.  
 
Results: 
 
o Ground speed required at 35 ft.   150 - 20.8  = 129.2 kts.  
o Ground speed at liftoff   129.2 - 1.6 = 127.6 kts.  
o True airspeed at liftoff   127.6 + 16.3 = 143.9 kts.  
o Ground speed at rotation    127.6 - 0.5 = 127.1 kts.  
o True airspeed at rotation 
 (for AFM speed and distances)   127.1+16.3 = 143.4   kts.  

 

 13 



10/16/12  AC 25-7C 

Example:  Landing — AFM Data  
 
Given:  
 
o Factored headwind with airplane 50 ft. above landing surface  21.7 kts.  
o Factored headwind with airplane on landing surface   16.3 kts.  
o Ground speed change for 50 ft. to touchdown (V50 – VTD)               4.0 kts.  
o True airspeed required at 50 ft.     130 kts.  
 
Results:   
 
o Ground speed at 50 ft.  130 - 21.7 = 108.3  kts.  
o Ground speed at touchdown  108.3 - 4.0  = 104.3  kts.  
o True airspeed at touchdown  104.3 + 16.3  = 120.6  kts.  

 
(8)  Expansion of Takeoff and Landing Data for a Range of Airport Elevations.  

 
(a)   These guidelines apply to expanding AFM takeoff and landing data above and 

below the altitude at which the airplane takeoff and landing performance tests are conducted.  
  
(b)   Historically, limits were placed on the extrapolation of takeoff data.  In the 

past, takeoff data could generally be extrapolated 6,000 feet above and 3,000 feet below the test 
field elevation when proven testing and data reduction methods were used.  For extrapolations 
beyond these limits, a 2 percent takeoff distance penalty was to be applied for every additional 
1,000 feet extrapolation.  Such limitations were generally not applied to extrapolation of landing 
data, provided the effect of the higher true airspeed on landing distance was taken into account. 

 
(c)   Since then, considerably more experience has since been gained both in terms 

of modeling airplane and propulsion system (i.e., turbine engines and propellers, where 
appropriate) performance and in verifying the accuracy of these models for determining high 
(and low) altitude takeoff and landing performance.  This experience has shown that the 
soundness of the extrapolation is primarily a function of the accuracy of the propulsion system 
performance model and its integration with the airplane drag model.  The basic aerodynamic 
characteristics of the airplane do not change significantly with altitude or ambient temperature, 
and any such effects are readily taken into account by standard airplane performance modeling 
practices. 

 
(d)   As a result, with installed propulsion system performance characteristics that 

have been adequately defined and verified, airplane takeoff and landing performance data 
obtained at one field elevation may be extrapolated to higher and lower altitudes within the 
limits of the operating envelope without applying additional performance conservatisms.  It 
should be noted, however, that extrapolation of the propulsion system data used in the 
determination and validation of propulsion system performance characteristics is typically 
limited to 3,000 feet above the highest altitude at which propulsion system parameters were 
evaluated for the pertinent power/thrust setting.  (See paragraph 9 of this AC for more 
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information on an acceptable means of establishing and verifying installed propulsion system 
performance characteristics.) 

 
(e)   Note that certification testing for operation at airports that are above 8,000 feet 

should also include functional tests of the cabin pressurization system in accordance with 
paragraph 87b(3) of this AC.  Consideration should be given to any sensitivity to, or dependency 
upon airport altitude, such as: engine and auxiliary power unit (APU) starting, passenger oxygen, 
autopilot, autoland, autothrottle system power/thrust set/operation. 
 

(9) Tailwind Takeoff and Landing. 
 

(a)   Wind Velocities of 10 Knots or Less - Approval may be given for 
performance, controllability, and engine operating characteristics for operations in reported 
tailwind velocities up to 10 knots without conducting additional flight tests at specific wind 
speeds. 

 
(b)   Wind Velocities Greater than 10 Knots. 

 
1   Performance.  It is considered that takeoff, rejected takeoff, and landing 

distances, measured in tailwind conditions greater than 10 knots, are unreliable for use in 
determining airplane performance.  Wind conditions of such magnitude are generally not 
sufficiently consistent over the length of the runway or over the time period required to perform 
the test maneuver.  The 150 percent operational tailwind factor, required by §§ 25.105(d)(1) and 
25.125(f), provides a satisfactory level of safety for operation in tailwinds up to 15 knots when 
using AFM data based on flight tests in nominally calm wind conditions.  
 

NOTE: The design requirements of § 25.479 (Level landing conditions) also 
require the effects of increased contact speeds to be investigated if approval for 
landings with tailwinds greater than 10 knots is desired. 

 
2   Control Characteristics.  The test tailwind velocity for demonstrating 

handling qualities should be equal to the proposed limit tailwind factored by 150 percent.  The 
intent of the 150 percent factor is to provide adequate margin for wind variability in operations, 
including currency of the wind data, averaging of the data by the measuring and reporting 
method, and the highly variable nature of higher wind conditions.  Therefore, the test wind 
condition of 150 percent of the proposed tailwind limit should be an averaged or smoothed wind 
speed, not a peak wind speed.  Airplane control characteristics should be evaluated under the 
following conditions with the c.g. at the aft limit and the test mean tailwind velocity equal to the 
proposed limit tailwind factored by 150 percent: 
 

(aa) Takeoff.  Both all-engines-operating and one-engine-inoperative 
(i.e., with a simulated failure of the critical engine at the engine failure speed, VEF) takeoffs 
should be evaluated at a light weight with maximum approved takeoff flap deflection. 

 
(bb)  Landing.  Approach and landing at light weight with maximum 

approved landing flap deflection. 
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(cc)  Determination of the increased ground speed effect on gear vibration 

or shimmy, and flight director, or autopilot instrument landing system (ILS) approaches, terrain 
awareness warning system (TAWS) sink rate modes, etc. 

 
(dd)  If engine idle power or thrust is increased to account for the 

increased tailwind velocity, ensure that deviations above the glideslope are recoverable. 
 

3   Weight Limits.  Consistent with the requirements of §§ 25.105(d)(1) and 
25.125(f), the maximum takeoff and maximum quick turnaround weights should be determined 
using brake energies and tire speeds, as appropriate, calculated with the limit tailwind velocity 
factored by 150 percent. 

 
4   Engine Operating Characteristics.  Satisfactory engine operation should 

be demonstrated at the limit tailwind velocity factored by 150 percent.  The demonstrations 
should include: 
 

(aa)  Zero groundspeed operation. 
 
(bb)  Takeoff power or thrust setting procedure used for AFM 

performance (typically completed by approximately 80 knots), both manually and automatically 
(autothrottle). 

 
(cc)  Reverse thrust operations. 
 

5   Airplane Flight Manual.  The AFM should contain a statement that the 
limitation for tailwinds greater than 10 knots reflects the capability of the airplane as evaluated 
in terms of airworthiness but does not constitute approval for operation in tailwinds exceeding 10 
knots. 
 

b.  Procedures.  
 
  (1)   The performance-related flight test procedures are discussed in each of the 
following paragraphs of this AC: 
 

10.  Takeoff and Takeoff Speeds 
11.  Accelerate-Stop Distance 
12.  Takeoff Path  
13.  Takeoff Distance and Takeoff Run 
14.  Takeoff Flight Path 
15.  Climb:  General 
16.  Landing Climb 
17.  Climb:  One Engine Inoperative  
18.  En Route Flight Path 
19.  Landing 
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(2)   Performance Data for Multiple Flap or Additional Flap Positions.  If approval of 
performance data is requested for flap settings at which no test data are available, the data may 
be obtained from interpolation of flight data obtained at no less than four flap settings that are 
within a constant configuration of other lift devices.  If the span of flap settings is small and 
previously obtained data provide sufficient confidence (i.e., the shape of the curves are known 
and lend themselves to accurate interpolation), data from three flap settings may be acceptable.  
 

(3)   Flight Characteristics for Abnormal Configurations (Ref. § 25.671(c)).  
 

(a)  For purposes of this AC, an abnormal configuration is an operational 
configuration that results from any single failure or any combination of failures not shown to be 
improbable. 

 
(b)  Flight characteristics for abnormal configurations may be determined by test or 

analysis to assure that the airplane is capable of continued safe flight and landing.  Flight tests, if 
required, should be conducted at the critical conditions of altitude, weight, c.g., and engine 
power or thrust associated with the configuration, and at the most critical airspeed between the 
speed reached one second after stall warning occurs (see paragraph 29e(2)(h) of this AC) and the 
maximum operating airspeed for the configuration.  
 
4. Load Distribution Limits - § 25.23.  [Reserved] 
 
5. Weight Limits and Center of Gravity Limits - §§ 25.25 and 25.27.  [Reserved] 
 
6. Empty Weight and Corresponding Center of Gravity - § 25.29.  [Reserved] 
 
7. Removable Ballast - § 25.31. 
 

a. Explanation.  None.  
 
 b. Procedures.  Ballast may be carried during the flight tests whenever it is necessary to 
achieve a specific weight and c.g. location.  Consideration should be given to the vertical as well 
as horizontal location of the ballast in cases where it may have an appreciable effect on the 
flying qualities of the airplane.  The strength of the supporting structures should be considered in 
order to make sure they do not fail as a result of the anticipated loads that may be imposed 
during the particular tests.  As required by § 21.35(a), applicants must show that these structures 
comply with the applicable structural requirements of part 25 before conducting flight tests with 
these structures in place. 
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8. Propeller Speed and Pitch Limits - § 25.33.  
 

a.  Explanation.  None. 
 
b.   Procedures.  The tachometers and the airspeed indicating system of the test airplane 

should have been calibrated within the last six months.  With that prerequisite satisfied, the 
following should be accomplished: 
 

(1)   Determine that the propeller speeds and pitch settings are safe and satisfactory 
during all tests that are conducted in the flight test program within the certification limits of the 
airplane, engine, and propeller.  This includes establishing acceptable low pitch (flight idle) 
blade angles on turbopropeller airplanes and verifying that propeller configurations are 
satisfactory at VMO/MMO to prevent propeller overspeed.  

 
(2)   Determine that the propeller speeds and pitch settings are safe and satisfactory 

during all tests that are conducted to satisfy the performance requirements. 
 
(3)   With the propeller governors operative and the propeller controls in full high 

revolutions per minute (r.p.m.) position, determine that the maximum takeoff power settings do 
not exceed the rated takeoff r.p.m. of each engine during takeoff and climb at the best rate-of-
climb speed.  

 
(4)   With the propeller governors made inoperative by mechanical means, determine the 

maximum power, no-wind, static r.p.m.’s.  With the propeller governors operating on the low 
pitch stop, the engine speeds must not exceed 103 percent of the maximum allowable takeoff 
r.p.m. or 99 percent of an approved maximum overspeed, as required by § 25.33(c).  On 
turbopropeller engines, the engine speeds should not exceed the maximum engine speeds 
allowed by engine and propeller type designs.  Note which systems were disabled and how the 
disablement was done.  If maximum takeoff power torque or sea level standard conditions cannot 
be obtained on the test day, correct the data to these conditions by an acceptable means.  A no-
wind condition is considered to be a wind of 5 knots or less.  The static r.p.m. should be the 
average obtained with a direct crosswind from the left and a direct crosswind from the right. 

 
(5)   If the above determinations are satisfactory, then measure the low-pitch stop setting 

and the high-pitch stop setting.  These data may have been obtained from the propeller 
manufacturer and may be used, provided the pitch stops have not been changed since the 
manufacturer delivered the propeller.  If measured, the blade station should be recorded.  Include 
these blade angles in the type certificate data sheet.  
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Section 2.  Performance 

 
9. General - § 25.101. 
 
 a.   Explanation - Propulsion System Behavior.  Section 25.101(c) requires that airplane 
“performance must correspond to the propulsive thrust available under the particular ambient 
atmospheric conditions, the particular flight conditions....”  The propulsion system’s (i.e., turbine 
engines and propellers, where appropriate), installed performance characteristics are primarily a 
function of engine power or thrust setting, airspeed, propeller efficiency (where applicable), 
altitude, and ambient temperature.  Determine the effects of each of these variables to establish 
the thrust available for airplane performance calculations. 

 
b.   Procedures. 
 

(1)   The intent is to develop a model of propulsion system performance that covers the 
approved flight envelope.  Furthermore, it should be shown that the combination of the 
propulsion system performance model and the airplane performance model is validated by the 
takeoff performance test data, climb performance tests, and tests used to determine airplane drag.  
Installed propulsion system performance characteristics may be established via the following 
tests and analyses: 
 

(a)   Steady-state engine power (or thrust) setting vs. power (or thrust) testing.  
Engines should be equipped with adequate instrumentation to allow the determination of thrust 
(or power).  Data should be acquired in order to validate the model, including propeller-installed 
thrust, if applicable, over the range of power or thrust settings, altitudes, temperatures, and 
airspeeds for which approval is sought.  Although it is not possible to definitively list or foresee 
all of the types of instrumentation that might be considered adequate for determining thrust (or 
power) output, two examples used in past certification programs are: (1) engine pressure rakes, 
with engines calibrated in a ground test cell, and (2) fan speed, with engines calibrated in a 
ground test cell and the calibration data validated by the use of a flying test bed.  In any case, the 
applicant should substantiate the adequacy of the instrumentation to be used for determining the 
thrust (or power) output. 

 
(b)   Lapse rate takeoff testing to characterize the behavior of power or thrust 

setting, rotor speeds, propeller effects (i.e., torque, R.P.M., and blade angle), or gas temperature 
as a function of time, thermal state, or airspeed, as appropriate.  These tests should include the 
operation of an automatic takeoff thrust control system (ATTCS), if applicable, and should cover 
the range of power or thrust settings for which approval is sought. 
 

1   Data for higher altitude power or thrust settings may be acquired via 
overboost (i.e., operating at a higher than normal power or thrust setting for the conditions) with 
the consent of the engine and propeller manufacturer(s), when applicable.  When considering the 
use of overboost on turbopropeller propulsion system installations to stimulate higher altitude 
and ambient temperature range conditions, the capability to achieve an appropriate simulation 
should be evaluated based on the engine and propeller control system(s) and aircraft 
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performance and structural considerations.  Engine (gearbox) torque, rotor speed, or gas 
temperature limits, including protection devices to prohibit or limit exceedances, may prevent 
the required amount of overboost needed for performance at the maximum airport altitude sought 
for approval.  Overboost may be considered as increased torque, reduced propeller speed, or a 
combination of both, in order to achieve the appropriate blade angle for the higher altitude and 
ambient temperature range simulation.  Consideration for extrapolations will depend on the 
applicant’s substantiation of the proper turbopropeller propulsion system simulated test 
conditions. 

 
2   Lapse rate characteristics should be validated by takeoff demonstrations 

at the maximum airport altitude for which takeoff approval is being sought.  Alternatively, if 
overboost (see paragraph 1 above) is used to simulate the power or thrust setting parameters of 
the maximum airport altitude for which takeoff approval is sought, the takeoff demonstrations of 
lapse rate characteristics can be performed at an airport altitude up to 3,000 feet lower than the 
maximum airport altitude.  
 

(c) Power/Thrust calculation substantiation.  Installed power or thrust should be 
calculated via a mathematical model of the propulsion system, or other appropriate means, 
adjusted as necessary to match the measured inflight performance characteristics of the installed 
propulsion system.  The propulsion system mathematical model should define the relationship of 
power or thrust to the power or thrust setting parameter over the range of power or thrust 
settings, airspeeds, altitudes, and temperatures for which approval is sought.  For turbojet 
airplanes, the propulsion system mathematical model should be substantiated by ground tests in 
which thrust is directly measured via a calibrated load cell or equivalent means.  For 
turbopropeller airplanes, the engine power measurement should be substantiated by a calibrated 
dynamometer or equivalent means, the engine jet thrust should be established by an acceptable 
engine model, and the propeller thrust and power characteristics should be substantiated by wind 
tunnel testing or equivalent means. 
 

(d)  Effects of ambient temperature.  The flight tests of paragraph 9b(l)(a) above 
will typically provide data over a broad range of ambient temperatures.  Additional data may be 
obtained from other flight or ground tests of the same type or series of engine.  The objective is 
to confirm that the propulsion system model accurately reflects the effect of temperature over the 
range of ambient temperatures for which approval is being sought (operating envelope).  
Because thrust (or power) data can usually be normalized versus temperature using either 
dimensionless variables (e.g., theta exponents or a thermodynamic cycle model), it is usually 
unnecessary to obtain data over the entire ambient temperature range.  There is no needed to 
conduct additional testing if: 
 

1   The data show that the behavior of power or thrust and limiting 
parameters versus ambient temperature can be predicted accurately, and 
 

2   Analysis based upon the test data shows that the propulsion system will 
operate at rated power or thrust without exceeding propulsion system limits. 
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(2) Extrapolation of propulsion system performance data to 3,000 feet above the 
highest airport altitude tested (but no higher than the maximum takeoff airport altitude to be 
approved).  is acceptable, provided the supporting data, including flight test and propulsion 
system operations data (e.g., engine and propeller control, limits exceedance, and surge 
protection devices scheduling), substantiates the proposed extrapolation procedures.  
Considerations for extrapolation depend upon an applicant’s determination, understanding, and 
substantiation of the critical operating modes of the propulsion system.  This understanding 
includes a determination and quantification of the effects that propulsion system installation and 
variations in ambient conditions have on these modes. 
 
10. Takeoff and Takeoff Speeds - §§ 25.105 and 25.107. 
 

a.   Explanation.  Section 25.105 specifies the conditions that must be considered in 
determining the takeoff speeds, accelerate-stop distances, takeoff path, takeoff distance, and 
takeoff run in accordance with part 25 requirements.  The primary objective of the takeoff tests 
required by § 25.107 is to determine the takeoff speeds for all takeoff configurations at all 
weight, altitude, and temperature conditions within the operational limits selected by the 
applicant.   
 
 b.   Procedures.   
 
  (1) Section 25.105(c)(1) requires the takeoff performance data to be determined for 
smooth, dry and wet, hard-surfaced runways.  Paragraph 11 of this AC describes methods for 
determining the accelerate-stop distances required by § 25.109.  Paragraph 13 describes methods 
for determining the takeoff distance and takeoff run required by § 25.113. 
 
  (2)   In accordance with § 25.101(f), testing for determining the accelerate-stop 
distances, takeoff flight paths, and takeoff distances should be accomplished using procedures 
established by the applicant for operation in service.  In accordance with §25.101(h), these 
procedures must be able to be consistently executed in service by crews of average skill, use 
methods or devices that are safe and reliable, and include allowances for any time delays in the 
execution of the procedures that may reasonably be expected in service.  These requirements 
prohibit the use of exceptional piloting techniques, such as higher control force inputs or higher 
pitch rates than would occur in operational service, from being used to generate unrealistic 
takeoff distances.  The intent of these requirements is to establish takeoff performance 
representative of that which can reasonably be expected to be achieved in operational service. 

 
(3) Attention should be paid to all potential sources of airspeed error, but special 

consideration should be given to airplanes with electronic instruments in the cockpit that apply 
electronic filtering to the airspeed data.  This filtering, which causes a time delay in the airspeed 
indication, can be a source of significant systematic error in the presentation of airspeed to the 
flightcrew.  With normal takeoff acceleration, the airplane will be at a higher speed than is 
indicated by the cockpit instrument, which can result in longer distances than are presented in 
the AFM, particularly in the event of a rejected takeoff near the indicated V1 speed.  The effects 
of any time delays caused by electronic filtering, pneumatic system lag, or other sources should 
be adequately addressed in the AFM speed and distance presentations.  Further explanation of 
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airspeed lag, particularly pertaining to airplanes with electronic instruments in the cockpit, and 
procedures for calibrating the airspeed indicating system (§ 25.1323(b)) are presented in 
paragraph 177 of this AC.  

 
(4)   Section 25.107(a)(1) - Engine Failure Speed (VEF).  The engine failure speed (VEF) 

is defined as the calibrated airspeed at which the critical engine is assumed to fail and must be 
selected by the applicant.  VEF cannot be less than the ground minimum control speed (VMCG). 
 

(5)   Section 25.107(a)(2) - V1.  V1 may not be less than VEF plus the speed gained with 
the critical engine inoperative during the time interval between VEF and the instant at which the 
pilot takes action after recognizing the engine failure.  This is indicated by pilot application of 
the first deceleration means such as brakes, throttles, spoilers, etc. during accelerate-stop tests.  
The applicant may choose the sequence of events.  Refer to paragraph 11 of this AC, addressing 
§ 25.109, for a more complete description of rejected takeoff (RTO) transition procedures and 
associated time delays.  
 

(6)   Section 25.107(b) - Minimum Takeoff Safety Speed (V2MIN). 
 

(a)  V2MIN, in terms of calibrated airspeed, cannot be less than: 
 

1  1.1 times the VMC defined in § 25.149. 
 

2   1.13 times VSR for two-engine and three-engine turbopropeller and 
reciprocating engine-powered airplanes and for all turbojet airplanes that do not have provisions 
for obtaining a significant reduction in the one-engine inoperative power-on stalling speed (i.e., 
boundary layer control, blown flaps, etc.).  The value of VSR to be used in determining V2MIN is 
the stall speed in the applicable takeoff configuration, landing gear retracted, except for those 
airplanes with a fixed landing gear or for gear-down dispatch. 
 

(b)   V2MIN may be reduced to 1.08 times VSR for turbopropeller and reciprocating 
engine-powered airplanes with more than three engines, and turbojet powered airplanes with 
adequate provisions for obtaining significant power-on stall speed reduction through the use of 
such things as boundary layer control, blown flaps, etc. 
 

(c)   For propeller-driven airplanes, the difference between the two margins, based 
upon the number of engines installed on the airplane, is because the application of power 
ordinarily reduces the stalling speed appreciably.  In the case of the two-engine propeller-driven 
airplane, at least half of this reduction is eliminated by the failure of an engine.  The difference in 
the required factors therefore provides approximately the same margin over the actual stalling 
speed under the power-on conditions that are obtained after the loss of an engine, no matter what 
the number of engines (in excess of one) may be.  Unlike the propeller-driven airplane, the 
turbojet/turbofan powered airplane does not show any appreciable difference between the power-
on and power-off stalling speed.  This is due to the absence of the propeller, which ordinarily 
induces a slipstream with the application of power causing the wing to retain its lift to a speed 
lower than the power-off stalling speed.  The applicant’s selection of the two speeds specified 
will influence the nature of the testing required in establishing the takeoff flight path. 
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(7)   Section 25.107(c) - Takeoff Safety Speed (V2).  V2 is the calibrated airspeed that is 

attained at or before the airplane reaches a height of 35 ft. above the takeoff surface after an 
engine failure at VEF using an established rotation speed (VR).  From the liftoff point, the takeoff 
surface extends to the end of the takeoff distance continuing at the same slope as the runway.  
During the takeoff speeds demonstration, V2 should be continued to an altitude sufficient to 
assure stable conditions beyond the 35 ft height.  V2 cannot be less than V2MIN.  In addition, V2 
cannot be less than the liftoff speed, VLOF, which is defined in § 25.107(f).  In accordance with 
§ 25.107(c), V2 in terms of calibrated airspeed may not be less than VR plus the speed increment 
attained before reaching a height of 35 feet above the takeoff surface and a speed that provides 
the maneuvering capability specified in § 25.143(h).  In addition, § 25.111(c)(2) stipulates that 
the airplane must reach V2 before it is 35 feet above the takeoff surface and continue at a speed 
not less than V2 until it is 400 feet above the takeoff surface.  These requirements were first 
expressed in Special Civil Air Regulation No. SR-422, Turbine-Powered Transport Category 
Airplanes of Current Design (SR-422A), paragraphs 4T.114(b)(4) and (c)(3) and 4T.116(e).  The 
concern that the regulation change was addressing was the overshoot of V2 after liftoff under the 
previous requirement that the airplane attain V2 on, or near, the ground.  The intent of the current 
requirement is to allow an acceleration to V2 after liftoff but not to allow a decrease in the field 
length required to attain a height of 35 feet above the takeoff surface by attaining a speed greater 
than V2, under low drag ground conditions, and using the excess kinetic energy to attain the 35 
foot height. 
 

(a)   In the case of turbojet powered airplanes, when most of the one-engine-
inoperative data have been collected using throttle chops, V2, and its relationship to VR, should 
be substantiated by at least a limited number of fuel cuts at VEF.  For derivative programs not 
involving a modification that would affect thrust decay characteristics, demonstrations of fuel 
cuts may be unnecessary. 
 

(b)   For propeller-driven airplanes, the use of fuel cuts can be more important in 
order to ensure that the takeoff speeds and distances are obtained with the critical engine’s 
propeller attaining the position it would during a sudden engine failure.  The number of tests that 
should be conducted using fuel cuts depends on the correlation obtained with the throttle chop 
data and substantiation that the data analysis methodology adequately models the effects of a 
sudden engine failure. 
 

(8)   Section 25.107(d) - Minimum Unstick Speed (VMU). 
 

(a) Section 25.107(d) states, “VMU speeds must be selected by the applicant.”  An 
applicant can either determine the lowest possible VMU speeds or select a higher speed that 
supports the takeoff performance targets of the airplane.  Regardless of how the applicant selects 
the VMU speeds, compliance must be shown with § 25.107(d), (e)(1)(iv), (e)(3), and (e)(4) to 
show that the selected VMU speeds allow the airplane to safely lift off the ground and continue 
the takeoff. 

 
(b) An applicant should comply with § 25.107(d) by conducting minimum unstick 

speed (VMU) tests with all engines operating and also with one engine inoperative.  During these 
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tests, the takeoff should be continued until the airplane is out of ground effect.  The airplane 
pitch attitude should not be decreased after liftoff. 
 

(c)   VMU testing to demonstrate the lowest VMU speed is a maximum performance 
flight test maneuver, and liftoff may occur very near the angle-of-attack for maximum lift 
coefficient.  Also, even though pitch attitude may be held fairly constant during the maneuver, 
environmental conditions and transiting through ground effect may result in changes in angle-of-
attack.  It is permissible to lift off at a speed that is below the normal stall warning speed, 
provided no more than light buffet is encountered.  

 
1   It is important for the flight test team to understand the control laws and 

any transitions between control laws during takeoff (e.g., based on weight on wheels) for an 
electronic flight control system that may present unique hazards that should be taken into 
account. 

2   An artificial stall warning system (e.g., a stick shaker) may be disabled 
during VMU testing, although doing so will require extreme caution and depend upon a thorough 
knowledge of the airplane’s stall characteristics, both in and out of ground effect.   
 

3   If the airplane is equipped with a stick pusher, angle-of-attack limiter, or 
other system that may affect the conduct of the test, the angle of attack setting for activation of 
the system may be selected by the applicant and differ from the nominal setting.  The system 
may alternatively be disabled or its activation delayed for test purposes until a safe altitude is 
reached.  However, for airplanes equipped with a stick pusher that is not designed to be inhibited 
during takeoff, the VMU test demonstrations will need to be assessed and will only remain valid if 
the stick pusher would not have activated with the angle-of-attack indication means set at the 
lowest angle within production tolerances. 

 
(d) In lieu of conducting one-engine-inoperative VMU tests, the applicant may 

conduct all-engines-operating VMU tests if all pertinent factors that would be associated with an 
actual one-engine-inoperative VMU test are simulated or otherwise taken into account.  To take 
into account all pertinent factors, it may be necessary to adjust the resulting VMU test values 
analytically.  The factors to be accounted for should include at least the following: 

 
1   Thrust/weight ratio for the one-engine-inoperative range. 

 
2   Controllability (may be related to one-engine-inoperative free air tests, 

such as VMCA). 
 

3   Increased drag due to use of lateral/directional control systems. 
 

4   Reduced lift due to use of devices such as wing spoilers for lateral 
control. 
 

5   Adverse effects of use of any other systems or devices on control, drag, or 
lift. 
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(e)   The number of VMU tests needed may be minimized by testing only the 
critical all-engines-operating and one-engine-inoperative thrust/weight ratios, provided the VMU 
speeds determined at these critical conditions are used for the range of thrust/weights appropriate 
to the all-engines-operating and one-engine-inoperative configurations.  The critical 
thrust/weight is established by correcting, to the VMU speed, the thrust that results in the airplane 
achieving its limiting one-engine-inoperative climb gradient at the normally scheduled speed and 
in the appropriate configuration. 
 

(f)   Amendment 25-42, effective March 1, 1978, revised §§ 25.107(d) and 
25.107(e)(1)(iv) in order to permit the one-engine-inoperative VMU to be determined by all-
engines-operating tests at the thrust/weight ratio corresponding to the one-engine-inoperative 
condition.  As revised, § 25.107(d) specifies that VMU must be selected for the range of 
thrust/weight ratios to be certificated, rather than for the all-engines-operating and one-engine-
inoperative conditions as was previously required.  In determining the all-engines-operating 
thrust/weight ratio that corresponds to the one-engine-inoperative condition, consider trim and 
control drag differences between the two configurations in addition to the effect of the number of 
engines operating.  The minimum thrust/weight ratio to be certificated is established by 
correcting, to the VMU speed, the thrust that results in the airplane achieving its limiting engine-
out climb gradient in the appropriate configuration and at the normally scheduled speed. 
 

(g)   To conduct the VMU tests, rotate the airplane as necessary to achieve the VMU 
attitude.  It is acceptable to use some additional nose-up trim over the normal trim setting during 
VMU demonstrations.  If additional nose-up trim is required, the additional considerations of 
paragraph (g), below, apply.  VMU is the speed at which the weight of the airplane is completely 
supported by aerodynamic lift and thrust forces.  Some judgment may be necessary on airplanes 
that have tilting main landing gear bogies.  Determining the liftoff point from gear loads and 
wheel speeds has been found acceptable in past programs.  After liftoff, the airplane should be 
flown out of ground effect.  During liftoff and the subsequent climbout, the airplane should be 
fully controllable. 
 

(h)   VMU Testing for Airplanes Having Limited Pitch Control Authority. 
 

1   For some airplanes with limited pitch control authority, it may not be 
possible, at forward c.g. and normal trim, to rotate the airplane to a liftoff attitude where the 
airplane could otherwise perform a clean flyaway at a minimum speed had the required attitude 
been achieved.  This may occur only over a portion of the takeoff weight range in some 
configurations.  Though generally associated with the inability of the pitch control surfaces to 
provide adequate pitching moment to rotate the airplane to the desired pitch attitude at low 
thrust/weight ratio conditions, the same phenomenon may occur at high thrust/weight ratio 
conditions for airplanes with high thrust lines (e.g., aft engines mounted high on the fuselage).  
When limited pitch control authority is clearly shown to be the case, VMU test conditions may be 
modified to allow testing aft of the forward c.g. limit and/or with use of more airplane nose-up 
trim than normal.  The VMU data determined with this procedure should be corrected to those 
values representative of the appropriate forward limit; the variation of VMU with c.g. may be 
assumed to be like the variation of free air stalling speed with c.g.  Although the development of 
scheduled takeoff speeds may proceed from these corrected VMU data, additional tests are 
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required (see paragraph 2 below) to check that the relaxed VMU criteria have not neglected 
problems that might arise from operational variations in rotating airplanes with limited pitch 
control authority. 
 

2   In the following assurance test, the airplane should demonstrate safe 
flyaway characteristics. 
 

(aa) Minimum speed liftoff should be demonstrated at the critical forward 
c.g. limit with normal trim.  For airplanes with a cutback forward c.g. at heavy weight, two 
weight/c.g. conditions should be considered.  The heavy weight tests should be conducted at 
maximum structural or maximum sea level climb-limited weight with the associated forward c.g.  
The full forward c.g. tests should be conducted at the highest associated weight.  Alternatively, 
testing may be conducted at a single weight if an analysis is provided that identifies the critical 
weight/c.g. combination with regard to limited pitch attitude capability for liftoff. 

 
(bb) These assurance tests should be conducted at the thrust/weight ratio 

that is most critical for attaining a pitch attitude that will provide a minimum liftoff speed. 
 

(i) For airplanes that are limited by low thrust/weight conditions, 
tests should be conducted at the minimum thrust/weight ratio for both the simulated one-engine-
inoperative test (i.e., symmetrical reduced thrust) case and the all-engines-operating case.  

 
(ii)   For airplanes that are limited by high thrust/weight conditions, 

tests should be conducted at the highest thrust/weight ratio within the airplane’s operating 
envelope for both the simulated one-engine-inoperative case (i.e., symmetrical reduced thrust) 
and the all-engines-operating case.  

 
(cc) One acceptable test technique is to hold full nose-up control column 

as the airplane accelerates.  As pitch attitude is achieved to establish the minimum liftoff speed, 
pitch control may be adjusted to prevent over-rotation, but the liftoff attitude should be 
maintained as the airplane flies off the ground and out of ground effect. 
 

(dd)  The resulting liftoff speeds are acceptable if the test proves 
successful and the liftoff speed is at least 5 knots below the normally scheduled liftoff speed.   
 

(ee)  This minimum 5 knot margin from the scheduled liftoff speed 
provides some leeway for operational variations such as mis-trim, c.g. errors, etc., that could 
further limit the elevator authority.  The reduced VMU margins arising from this test, relative to 
those specified in § 25.107(e)(1)(iv), are considered acceptable because of the reduced 
probability of a pitch control authority-limited airplane getting into a high drag condition due to 
over-rotation. 
 

(i)   VMU Testing for Geometry Limited Airplanes. 
 

1   For airplanes that are geometry limited (i.e., the minimum possible VMU 
speeds are limited by tail contact with the runway), § 25.107(e)(1)(iv)(B) allows the VMU to VLOF 
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speed margins to be reduced to 108 percent and 104 percent for the all-engines-operating and 
one-engine-inoperative conditions, respectively.  The VMU demonstrated should be sound and 
repeatable.   
 

2   An airplane that is deemed to be geometry limited at the conditions tested 
is expected to be geometry limited over its entire takeoff operating envelope.  If this is not the 
case, the airplane is not considered geometry limited and the reduced VMU to VLOF speed margins 
do not apply. 

 
3   One acceptable means for demonstrating compliance with §§ 25.107(d) 

and 25.107(e)(1)(iv) with respect to the capability for a safe liftoff and fly-away from the 
geometry limited condition is to show that at the lowest thrust-to-weight ratio for the all-engines-
operating condition: 
 

 (aa)  In the speed range from 96 to 100 percent of the actual liftoff 
speed), the aft under-surface of the airplane should be in contact with the runway.  Because of 
the dynamic nature of the test, it is recognized that contact will probably not be maintained 
during this entire speed range, so some judgment is necessary.  It has been found acceptable for 
contact to exist approximately 50 percent of the time that the airplane is in this speed range. 
 

(bb)  Beyond the point of liftoff to a height of 35 feet, the airplane’s pitch 
attitude should not decrease below that at the point of liftoff, nor should the speed increase more 
than 10 percent. 
 

(cc)  The horizontal distance from the start of the takeoff to a height of 35 
feet above the takeoff surface should not be greater than 105 percent of the distance determined 
in accordance with § 25.113(a)(2) without applying the 115 percent factor. 
 

(j) VMU for a Stretched Version of a Tested Airplane. 
 

1   VMU speeds obtained by flight testing one model of an airplane type may 
be used to generate VMU speeds for a geometry-limited stretched version of that airplane.  If the 
short body airplane met the criteria for the 104/108 percent VMU/VLOF speed margin for 
geometry limited airplanes as permitted by § 25.107(e)(1)(iv)(B) and discussed in paragraph 
10b(8)(i)1, the flight tests described in paragraph 10b(8)(i)3 should be performed on the 
stretched derivative.  Otherwise, the flight tests described in paragraph 10b(8)(j)2(bb) should be 
performed on the stretched derivative. 
 

2  Since the concern for tail strikes is increased with the stretched airplane, the 
following should be accomplished, in addition to normal takeoff tests, when the VMU schedule of 
the stretched derivative is derived from that of the shorter body parent airplane: 
 

(aa)  The minimum unstick speed (VMU) of the stretched derivative 
airplane should be determined by correcting the VMU of the shorter body tested airplane for the 
reduced runway pitch attitude capability and revised c.g. range of the stretched airplane.  
Alternatively, stretched airplane VMU speeds not determined in this manner should be 
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substantiated by flight testing or a rational analysis.  Scheduled rotation speeds (VR) for the 
stretched airplane should result in at least the required liftoff speed margins above the corrected 
VMU required by § 25.107(e)(1)(iv) for the one-engine-inoperative and all-engines-operating 
takeoff conditions.  

 
(bb)  At both the forward and aft c.g. limits, and over the thrust-to-weight 

range for each takeoff flap, the following takeoff tests should be accomplished.  The tests 
described in paragraphs (i) and (ii), below, should be accomplished with not more than 
occasional, minor (i.e., non-damaging) tail strikes.  
 

(i)   All-engines-operating, early rotation tests specified in paragraph 
10b(9)(c)2, including both the rapid rotations and over-rotations as separate test conditions. 

 
(ii)   One-engine-inoperative, early rotation tests specified in 

paragraph 10b(9)(b). 
 
(iii)  All-engines-operating, moderate rotation rate (i.e., more rapid 

than normal) takeoff tests, using the scheduled VR and normal pitch attitude after liftoff.  Tail 
strikes should not occur for this condition. 
 

(9)  Section 25.107(e) - Rotation Speed (VR). 
 
   (a)   The rotation speed, (VR) in terms of calibrated airspeed, must be selected by 
the applicant.  VR has a number of constraints that must be observed in order to comply with 
§ 25.107(e): 
 

1  VR may not be less than V1; however, it can be equal to V1 in some cases. 
 
    2   VR may not be less than 105 percent of the air minimum control speed 
(VMCA).  
 

3   VR must be a speed that will allow the airplane to reach V2 at or before 
reaching a height of 35 ft. above the takeoff surface. 
 

4   VR must be a speed that will result in liftoff at a speed not less than 110 
percent of VMU (unless geometry limited) for the all-engines-operating condition and not less 
than 105 percent of the VMU (unless geometry limited) determined at the thrust/weight ratio 
corresponding to the one-engine-inoperative condition for each set of conditions such as weight, 
altitude, temperature, and configuration when the airplane is rotated at its maximum practicable 
rate. 
 

(b)   Early rotation, one-engine-inoperative test. 
 

1   In showing compliance with § 25.107(e)(3), some guidance relative to the 
airspeed attained at the 35 ft. height during the associated flight test is necessary.  As this 
requirement only specifies an early rotation (VR-5 knots), it is interpreted that pilot technique is 
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to remain the same as normally used for a one-engine-inoperative condition.  With these 
considerations in mind, it is apparent that the airspeed achieved at the 35 ft. point can be 
somewhat below the normal scheduled V2 speed.  However, the amount of permissible V2 speed 
reduction should be limited to a reasonable amount as described below. 
 

2   These test criteria apply to all unapproved, new, basic model airplanes.  
They also apply to previously approved airplanes when subsequent testing is warranted.  
However, for those airplanes where these criteria are more stringent than those previously 
applied, consideration will be given to permitting some latitude in the test criteria. 
 

3   In conducting the flight tests required by § 25.107(e)(3), the test pilot 
should use the normal/natural rotation technique associated with the use of scheduled takeoff 
speeds for the airplane being tested.  Intentional tail or tail skid contact is not considered 
acceptable.  Non-damaging contact due to inadvertent over-rotation is acceptable provided there 
is a prompt recovery to the normal one-engine-inoperative takeoff pitch attitude.  Further, the 
airspeed attained at the 35 ft. height during this test should not be less than the scheduled V2 
value minus 5 knots.  These speed limits should not be considered or used as target V2 test 
speeds, but rather are intended to provide an acceptable range of speed departure below the 
scheduled V2 value. 
 

4   In this test, the simulated engine failure should be accomplished 
sufficiently in advance of the VR test speed to allow for engine spin-down, unless this would be 
below the VMCG, in which case VMCG should govern.  The normal one-engine-inoperative takeoff 
distance may be analytically adjusted to compensate for the effect of the early power or thrust 
reduction.  Further, in those tests where the airspeed achieved at the 35-ft. height is slightly less 
than the V2-5 knots limiting value, it will be permissible, in lieu of conducting the tests again, to 
analytically adjust the test distance to account for the excessive speed decrement. 
 

(c)   All-engines-operating tests. 
 

1   Section 25.107(e)(4) states that there must not be a “marked increase” in 
the scheduled takeoff distance when reasonably expected service variations such as early and 
excessive rotation and out-of-trim conditions are encountered.  This has been interpreted as 
requiring takeoff tests with all engines operating with: 
 

(aa) A lower than scheduled rotation speed, and 
 
(bb)  Out-of-trim conditions, but with rotation at the scheduled VR speed. 

 
NOTE: The expression “marked increase” in the takeoff distance is considered to 
be any amount in excess of 1 percent of the scheduled takeoff distance.  Thus, the 
tests should not result in field lengths more than 101 percent of the takeoff field 
lengths calculated in accordance with the applicable requirements of part 25 for 
presentation in the AFM. 
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2   For the early rotation condition with all engines operating, and at a weight 
as near as practicable to the maximum sea level standard day takeoff weight limit, it should be 
shown by tests that when the airplane is rotated at a speed below the scheduled VR, no “marked 
increase” in the scheduled AFM field length will result.  For these tests, the airplane should be 
rotated at a speed equal to the scheduled VR minus 7 percent or the scheduled VR minus 10 
knots, whichever results in the higher rotation speed.  Tests should be conducted at:  (1) a rapid 
rotation rate to the normal takeoff attitude, and (2) an over-rotation of 2 degrees above normal 
attitude after liftoff at the normal rotation rate.  For tests using over rotations, the resulting 
increased pitch attitude should be maintained until the airplane is out of ground effect.  Tail 
strikes during this demonstration are acceptable if they are minor and do not result in unsafe 
conditions. 
 

3   For reasonably expected out-of-trim conditions with all engines operating 
and as near as practicable to the maximum weight allowed under sea level standard day 
conditions, it should be shown that there will not be a “marked increase” in the scheduled AFM 
takeoff distance when rotation is initiated in a normal manner at the scheduled VR speed.  The 
amount of mistrim should be the maximum mistrim that would not result in a takeoff 
configuration warning, including taking into account the takeoff configuration warning system 
rigging tolerance.  It is permissible to accept an analysis in lieu of actual testing if the analysis 
shows that the out-of-trim condition would not present unsafe flight characteristics or a “marked 
increase” in the scheduled AFM field lengths. 

 
4   Section 25.107(e)(4) also states that the reasonably expected variations in 

service from the established takeoff procedures for the operation of the airplane may not result in 
unsafe flight characteristics.  For example, for an airplane loaded to obtain a forward c.g. 
position and mistrimmed for an aft c.g. loading, it may not be possible to rotate at the normal 
operating speeds due to excessive control force or lack of primary pitch control authority.  This 
may result in an excessive delay in accomplishing the rotation.  Such a condition would be 
considered an unsafe flight characteristic.  Similarly, for an airplane loaded to obtain an aft c.g. 
position and mistrimmed for a forward c.g. loading, it may not be possible to readily arrest a 
self-rotating tendency.  This rotation, if abrupt enough and rapid enough, could lead to stall.  
Qualitative assessments should be made by the test pilot in the following takeoff tests with all 
engines operating:  
 

(aa) The test pilot should determine that no unsafe characteristics exist 
with the airplane loaded to the forward c.g. limit and the stabilizer mistrimmed in the airplane 
nose-down direction.  The amount of mistrim should be the maximum mistrim that would not 
result in a configuration warning (including taking into account takeoff warning system 
tolerances).  Rotation should be initiated at the scheduled rotation speed for the airplane weight 
and ambient conditions.  Unsafe characteristics include an excessive pitch control force to obtain 
normal airplane response or an excessive time to achieve perceptible rotation.  
 

(bb)  The test pilot should determine that no unsafe characteristics exist 
with the airplane loaded to the aft c.g. limit and the stabilizer mistrimmed in the airplane nose-up 
direction.  The amount of mistrim should be the maximum mistrim that would not result in a 
configuration warning (including taking into account takeoff warning system tolerances).  The 
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airplane should be rotated at the scheduled rotation speed for the airplane weight and ambient 
conditions.  Unsafe characteristics include: an abrupt self rotating tendency that cannot be 
checked with normal control input, or an excessive pitch control force required to maintain the 
airplane in the normal pitch attitude prior to the scheduled rotation speed or during rotation and 
initial climb.  
 

(cc) For the tests described in paragraphs (aa) and (bb) above, the flight 
characteristics should be assessed at the most critical combinations of airplane weight, wing flap 
position and engine power or thrust for the out of trim position being considered.  
 

(d)   Stall Warning During Takeoff Speed Tests.  The presumption is that if an 
operational pilot was to make an error in takeoff speeds that resulted in an encounter with stall 
warning, the likely response would be to recover aggressively to a safe flight condition rather 
than trying to duplicate the AFM takeoff flight path.  Therefore, the activation of any stall 
warning devices, or the occurrence of airframe buffeting during takeoff speed testing, is 
unacceptable. 
 

(e)   Stick Forces During Takeoff Speed Tests.  Per § 25.143(a)(1) and (b), stick 
forces to initiate rotation and continue the takeoff during takeoff flight testing must comply with 
the control force limits of § 25.143(d).  This includes the mistrim takeoff tests described in 
paragraphs 10b(9)(c)4(aa) and (bb) to show compliance with § 25.107 (e)(4), which are 
considered to represent probable operating conditions under § 25.143(b).  Stick forces should be 
those that result from using the takeoff procedures established by the manufacturer for use in 
operational service in accordance with § 25.101(f) and must comply with § 25.101(h).  
 

(10)  Section 25.107(f) - Liftoff Speed (VLOF). 
 

(a)   The liftoff speed (VLOF) is defined as the calibrated airspeed at which the 
airplane first becomes airborne (i.e., no contact with the runway).  This allows comparison of 
liftoff speed with tire limit speed.  VLOF differs from VMU in that VMU is the minimum possible 
VLOF speed for a given configuration, and depending upon landing gear design, VMU liftoff is 
shown to be the point where all of the airplane weight is being supported by airplane lift and 
thrust forces and not any portion by the landing gear.  For example, after the VMU speed is 
reached, a truck tilt actuator may force a front or rear wheel set to be in contact with the runway, 
even though the liftoff is in progress by virtue of lift being greater than weight.  

 
(b)   The maximum ground speed at liftoff, considering the entire takeoff operating 

envelope and taking into account 50 percent of the headwind and 150 percent of the tailwind, in 
accordance with § 25.105(d)(1), must not exceed the tire speed rating established under 
§ 25.733(a) or (c).  
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11. Accelerate-Stop Distance - § 25.109. 
 

a.  Explanation.   
 

(1)   The accelerate-stop distance is the horizontal distance from a reference point on the 
airplane at initial brake release to that same reference point after the airplane is brought to a stop.  

 
(2)   This section describes test demonstrations and data expansion methods necessary to 

determine accelerate-stop distances for publication in the FAA AFM, as required by 
§ 25.1583(h) (by reference to § 25.1533).  Amendment 25-92 revised some aspects of the part 25 
accelerate-stop criteria and added new requirements related to the stopping capability of the 
airplane as affected by brake wear and wet runways.  The changes imparted to the accelerate-
stop requirements by Amendment 25-92 are listed below.  (For other material related to the use 
of accelerate-stop distances, see parts 121 and 135 of the Code of Federal Regulations)  

 
(a) Section 25.101(i) was added to require accelerate-stop distances to be 

determined with all the airplane wheel brake assemblies at the fully worn limit of their allowable 
wear range.  

 
(b)   Section 25.105(c)(1) was revised to require takeoff data to be determined for 

wet, in addition to dry, hard surfaced runways.  At the applicant’s option, takeoff data may also 
be determined for wet runways that have grooved or porous friction course surfaces.  

 
(c)   Section 25.107(a)(2) was revised to remove the reference to “takeoff decision 

speed” from the definition of V1.  V1 is the speed by which the pilot has already made the 
decision to reject the takeoff and has initiated the first action to stop the airplane.   

 
(d)   Section 25.109 was revised to add a requirement to determine accelerate-stop 

distances for wet runways.  Additionally, the requirement for the AFM expansion to include two 
seconds of continued acceleration beyond V1, with the operating engines at takeoff power or 
thrust, as introduced by Amendment 25-42, was replaced with a distance increment equivalent to 
two seconds at V1.  Also, the text of § 25.109(a) was modified to clarify that the accelerate-stop 
distances must take into account the highest speed reached during the rejected takeoff maneuver, 
including, as applicable, speeds higher than V1.  

 
(e)   Section 25.109(f) was added to permit credit for the use of reverse thrust in 

determining wet runway accelerate-stop distances (subject to the requirements of § 25.109(e)) 
and to explicitly deny reverse thrust credit for determining dry runway accelerate-stop distances.  

 
(f)   Section 25.109(i) was added to require a maximum brake energy accelerate-

stop test to be conducted with not more than 10 percent of the allowable brake wear range 
remaining on each individual wheel-brake assembly.  

 
(g)   Section 25.735(h) was added to require the maximum rejected takeoff brake 

energy absorption capacity rating used during qualification testing to the applicable Technical 
Standard Order to be based on the fully worn limit of the brake’s allowable wear range.   
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NOTE: Section 25.735, has been more recently revised by Amendment 25-107, 
which moved the rejected takeoff kinetic energy rating requirements into 
§ 25.735(f).  
 
 (h)   Section 25.1533(a)(3) was revised to add runway surface condition (dry or 

wet) as a variable that must be accounted for in establishing minimum takeoff distances.  Section 
25.1533(a)(3) was also revised to allow wet runway takeoff distances on grooved and porous 
friction course (PFC) runways to be established as additional operating limitations, but approval 
to use these distances is limited to runways that have been designed, constructed, and maintained 
in a manner acceptable to the FAA Administrator. 
 
 b.  The applicable part 25 regulations are § 25.109, and the following: 
 

§ 25.101(f) Airplane configuration and procedures 

§ 25.101(h) Pilot action time delay allowances 

§ 25.101(i) Worn brake stopping performance 

§ 25.105 Takeoff configuration and environmental and runway 
conditions 

§ 25.107(a)(l) & (2) V1 and VEF speed definitions 

§ 25.735 Brakes and braking systems 

§ 25.1301 Function and installation 

§ 25.1309 Equipment, systems, and installation 

§ 25.1533 Additional operating limitations - maximum takeoff weights 
and minimum takeoff distances 

§ 25.1583(h) AFM - operating limitations 

§ 25.1587 AFM - performance information 
 
 c.   Procedures.  The following paragraphs provide guidance for accomplishing accelerate-
stop flight tests and expanding the resulting data for the determination of AFM performance 
information. 
 

(1)   Accelerate-stop testing.  The following guidance applies to turbine-powered 
airplanes with and without propellers.  Guidance regarding flight testing applies only to dry 
runway accelerate-stop distances.  Guidance for expanding the flight test data to determine AFM 
distances applies to both dry and wet runways, unless otherwise noted.  Further guidance for 
determining wet runway accelerate-stop distances is provided in paragraph 11c(4). 
 

(a) In order to establish a distance that would be representative of the distance 
needed in the event of a rejected takeoff, where the first action to stop the airplane is taken at V1, 
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a sufficient number of test runs should be conducted for each airplane configuration specified by 
the applicant.  (For intermediate configurations, see paragraph 3 of this AC.) 
 

(b)   The guidance outlined in paragraph 11c(3) describes how to include 
allowances for any time delays, as required by § 25.101(h)(3), for the flightcrew to accomplish 
the rejected takeoff operating procedures. 
 

(c)   Section 25.101(i) states that the accelerate-stop distances must be determined 
with all the airplane wheel-brake assemblies at the fully worn limit of their allowable wear 
range.  The fully worn limit is defined as the maximum amount of wear allowed before the brake 
is to be removed from the airplane for overhaul.  The allowable wear should be defined in terms 
of a linear dimension in the axial direction, which is typically determined by measuring the wear 
pin extension. 
 

1   The only accelerate-stop test that must be conducted at a specific brake 
wear state is the maximum brake kinetic energy demonstration, which must use brakes that have 
no more than 10 percent of the allowable brake wear range remaining, as required by § 25.109(i).  
(See paragraph 11c(2)(c) of this AC).  The remainder of the accelerate-stop tests may be 
conducted with the brakes in any wear state as long as a suitable combination of airplane and 
dynamometer tests is used to determine the accelerate-stop distances corresponding to fully worn 
brakes.  For example, dynamometer testing may be used to determine whether there is a 
reduction in brake performance from the wear state used in the airplane tests to a fully worn 
brake.  The airplane test data could then be adjusted analytically for this difference without 
additional airplane testing. 
 

2   Either airplane-worn or mechanically-worn brakes (i.e., machined or 
dynamometer worn) may be used.  If mechanically-worn brakes are used, it should be shown that 
they can be expected to provide similar results to airplane-worn brakes.  This comparison can be 
based on service experience on the test brake or an appropriate equivalent brake, or on 
dynamometer wear test data when service data are unavailable. 
 

(d)   Section 25.109(f)(1) denies credit for the use of reverse thrust as a 
decelerating means in determining the accelerate-stop distance for a dry runway.  This provision 
applies to both turbine engine and propeller engine reverse thrust (but not to any drag resulting 
from the ground idle power setting for a propeller engine).  Credit for the additional deceleration 
available from reverse thrust is permitted for wet runway accelerate-stop distances, provided the 
thrust reverser system is shown to be safe, reliable, capable of giving repeatable results, and does 
not require exceptional skill to control the airplane.  (See paragraph 11c(4)(e) for guidance 
related to obtaining accelerate-stop performance credit for reverse thrust on wet runways.) 
 

(e)   The accelerate-stop test runs should be conducted at weight/speed 
combinations that will provide an even distribution of test conditions over the range of weights, 
speeds, and brake energies for which takeoff data will be provided in the AFM.  The effects of 
different airport elevations can be simulated at one airport elevation, provided the braking speeds 
employed are relevant for the range of airplane energies to be absorbed by the brakes.  The 
limiting brake energy value in the AFM should not exceed the maximum demonstrated in these 
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tests or the maximum for which the brake has been approved.  (See paragraph 11c(2) for further 
guidance related to tests and analyses for the demonstration of the maximum brake energy 
absorption capability.) 
 

(f) The V1 speeds used in the accelerate-stop tests need not correspond precisely 
to the AFM values for the test conditions since it may be necessary to increase or decrease the 
AFM V1 speed to investigate fully the energy range and weight envelope. 

 
(g)   A total of at least six accelerate-stop flight tests should be conducted.  Unless 

sufficient data are available for the specific airplane type showing how braking performance 
varies with weight, kinetic energy, lift, drag, ground speed, torque limit, etc., at least two tests 
should be conducted for each configuration when the same braking coefficient of friction is 
being claimed for multiple aerodynamic configurations.  These tests should be conducted on 
smooth, hard surfaced, dry runways. 

 
(h)   For approval of dispatch capability with anti-skid inoperative, nose wheel 

brakes or specified main wheel-brake(s) inoperative, automatic braking systems, etc., a full set of 
tests, as described in paragraph (g) above, should normally be conducted.  A lesser number of 
tests may be accepted for “equal or better” demonstrations, to establish small increments or if 
adequate conservatism is used during testing. 

 
(i)   Either ground or airborne instrumentation should include means to determine 

the horizontal distance time-history. 
 
(j)   The wind speed and direction relative to the test runway should be determined 

and corrected to a height corresponding to the approximate height of the mean aerodynamic 
chord.  (See paragraph 3 of this AC.) 
 

(k)   The accelerate-stop tests should be conducted in the following configurations: 
 

1   Heavy to light weight as required. 
 

2   Most critical c.g. position. 
 

3   Wing flaps in the takeoff position(s). 
 

4   Tire pressure:  before taxi and with cold tires, set to the highest value 
appropriate to the takeoff weight for which approval is being sought. 
 

5   Engine idle power or thrust:  set at the recommended upper limit for use 
on the ground or the effect of maximum ground idle power or thrust may be accounted for in 
data analyses.  For maximum brake energy and fuse plug no-melt tests, data analysis may not be 
used in place of maximum ground idle power or thrust. 
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(l)   Engine power or thrust should be appropriate to each segment of the rejected 
takeoff and should include accounting for power or thrust decay rates (i.e., spin down) for failed 
or throttled back engines. 
 

1   Turbojet powered airplanes.  For AFM calculation purposes, the critical 
engine failure accelerate-stop data may be based on the failed engine spinning down to a 
windmilling condition.   

 
NOTE: If, due to the certification basis of the airplane, all-engine-accelerate-stop 
distances are not being considered, the one-engine-inoperative AFM distances 
should be based on the critical engine failing to maximum ground idle power or 
thrust rather than the windmilling condition.   

 
2   The power or thrust from the operative engine(s) should be consistent 

with a throttle chop to maximum ground idle power or thrust.  For determining the all-engines-
operating dry runway accelerate-stop AFM distances, the stopping portion should be based on all 
engines producing maximum ground idle power or thrust (after engine spin down), as noted in 
paragraph 11c(1)(k)5.  The accelerate-stop tests may be conducted with either concurrent or 
sequential throttle chops to idle power or thrust as long as the data are adjusted to take into 
account pilot reaction time, and any control, system, or braking differences (e.g., electrical or 
hydraulic/mechanical transients associated with an engine failing to a windmilling condition 
resulting in reduced braking effectiveness).  Test data should also be analytically corrected for 
any differences between maximum ground idle power or thrust and the idle power or thrust level 
achieved during the test.  For the criteria relating to reverse thrust credit for wet runway 
accelerate-stop distances, see paragraph 11c(4)(e). 
 

3   Turbopropeller-powered airplanes.  For the one-engine-inoperative 
accelerate-stop distances, the critical engine’s propeller should be in the position it would 
normally assume when an engine fails and the power levers are closed.  For dry runway one-
engine-inoperative accelerate-stop distances, the high drag ground-idle position of the operating 
engines’ propellers (defined by a pitch setting that results in not less than zero total thrust, i.e., 
propeller plus jet thrust, at zero airspeed) may be used provided adequate directional control is 
available on a wet runway and the related operational procedures comply with § 25.101(f) and 
(h).  Wet runway controllability may either be demonstrated by using the guidance available in 
paragraph 11c(4)(e)6 at the appropriate power level, or adequate control can be assumed to be 
available at ground idle power if reverse thrust credit is approved for determining the wet 
runway accelerate-stop distances.  For the all-engines-operating accelerate-stop distances on a 
dry runway, the high drag ground-idle propeller position may be used for all engines (subject to 
§ 25.101(f) and (h)).  For the criteria relating to reverse thrust credit for wet runway accelerate-
stop distances, see paragraph 11c(4)(e). 
 

(m) System transient effects (e.g., engine spin-down, brake pressure ramp-up, etc.) 
should be determined and properly accounted for in the calculation of AFM accelerate-stop 
distances (see paragraph 11c(3)(i)). 
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(2)   Maximum Brake Energy Testing.  The following paragraphs describe regulatory 
requirements and acceptable test methods for conducting an accelerate-stop test run to 
demonstrate the maximum energy absorption capability of the wheel brakes. 
 

(a) The maximum brake energy accelerate-stop demonstration should be 
conducted at not less than the maximum takeoff weight.  It should be preceded by at least a 3-
mile taxi with all engines operating at maximum ground idle power or thrust, including three full 
stops using normal braking.  Following the maximum brake energy stop, it will not be necessary 
to demonstrate the airplane’s ability to taxi. 
 

(b)   Section 25.735(f)(2) requires the maximum kinetic energy accelerate-stop 
absorption capability of each wheel, tire, and brake assembly to be determined.  It also requires 
dynamometer testing to show that the wheel, brake, and tire assembly is capable of absorbing not 
less than this level of kinetic energy throughout the defined wear range of the brake.  The 
calculation of maximum brake energy limited takeoff weights and speeds, for presentation in the 
AFM performance section, therefore should be based on the most critical wear range of the 
brake.  
 

(c)   Section 25.109(i) requires a flight test demonstration of the maximum brake 
kinetic energy accelerate-stop distance to be conducted with not more than 10 percent of the 
allowable brake wear range remaining on each of the airplane wheel-brakes.  The 10 percent 
allowance on the brake wear state is intended to ease test logistics and increase test safety, not to 
allow the accelerate-stop distance to be determined with less than fully worn brakes.  If the 
brakes are not in the fully worn state at the beginning of the test, the accelerate-stop distance 
should be corrected as necessary to represent the stopping capability of fully worn brakes. 
 

(d)   The maximum airplane brake energy allowed for dispatch should not exceed 
the value for which a satisfactory after-stop condition exists, or the value documented under the 
applicable TSO (or an acceptable equivalent), whichever value is less.  A satisfactory after-stop 
condition is defined as one in which fires are confined to tires, wheels, and brakes, such that 
progressive engulfment of the rest of the airplane would not occur during the time of passenger 
and crew evacuation.  The application of fire fighting means or artificial coolants should not be 
required for a period of 5 minutes following the stop. 
 

(e)   Landings are not an acceptable means for demonstrating the maximum 
rejected takeoff brake energy.  Though permitted in the past, service experience has shown that 
methods used to predict brake and tire temperature increases that would have occurred during 
taxi and acceleration, as specified in paragraph 11c(2)(a), were not able to accurately account for 
the associated energy increments. 
 

(3)  Accelerate-Stop Time Delays.  Section 25.101(h) requires allowance for time 
delays in the execution of procedures.  Amendment 25-42 (effective March 1, 1978) amended 
the airworthiness standards to clarify and standardize the method of applying these time delays 
to the accelerate-stop transition period.  Amendment 25-42 also added the critical engine failure 
speed, VEF, and clarified the meaning of V1 with relation to VEF.  The preamble to Amendment 
25-42 states that “V1 is determined by adding to VEF (the speed at which the critical engine is 
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assumed to fail) the speed gained with the critical engine inoperative during the time interval 
between the instant at which the critical engine is failed and the instant at which the test pilot 
recognizes and reacts to the engine failure, as indicated by the pilot’s application of the first 
retarding means during accelerate-stop tests.”  Thus it can be seen that V1 is not only intended to 
be at the end of the decision process, but it also includes the time it takes for the pilot to perform 
the first action to stop the airplane.  (See Appendix 3 for further discussion on the historical 
development of accelerate-stop time delays.)  The purpose of the time delays is to allow 
sufficient time (and distance) for a pilot, in actual operations, to accomplish the procedures for 
stopping the airplane.  The time delays are not intended to allow extra time for making a decision 
to stop as the airplane passes through V1.  Since the typical transport category airplane requires 
three pilot actions (i.e., brakes-throttles-spoilers) to achieve the final braking configuration, 
amendment 25-42 defined a two-second time period, in § 25.109, to account for delays in 
activating the second and third deceleration devices.  Amendment 25-92 (effective March 20, 
1998) redefined, and reinterpreted the application of that two-second delay time as a distance 
increment equivalent to two seconds at V1.  No credit may be taken for system transient effects 
(e.g., engine spin-down, brake pressure ramp-up, etc.) in determining this distance.  The 
following paragraphs provide guidance related to the interpretation and application of delay 
times to show compliance with the accelerate-stop requirements of Amendment 25-92. 
 
    (a) Figure 11-1 presents a pictorial representation of the accelerate-stop time 
delays considered acceptable for compliance with § 25.101(h) as discussed above. 
 

 Figure 11-1.  Accelerate-Stop Time Delays 
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(b)  VEF is the calibrated airspeed selected by the applicant at which the critical 
engine is assumed to fail.  The relationship between VEF and V1 is defined in § 25.107. 
 

(c)  tact 1 = the demonstrated time interval between engine failure and initiation of 
the first pilot action to stop the airplane.  This time interval is defined as beginning at the instant 
the critical engine is failed and ending when the pilot recognizes and reacts to the engine failure, 
as indicated by the pilot’s first action taken to stop the airplane during accelerate-stop tests.  A 
sufficient number of demonstrations should be conducted using both applicant and FAA test 
pilots to assure that the time increment is representative and repeatable.  The pilot’s feet should 
be on the rudder pedals, not the brakes, during the tests.  For AFM data expansion purposes, in 

 38 



10/16/12  AC 25-7C 

order to provide a recognition time increment that can be executed consistently in service, this 
time increment should be equal to the demonstrated time or one second, whichever is greater.  If 
the airplane incorporates an engine failure warning light, the recognition time includes the time 
increment necessary for the engine to spool down to the point of warning light activation, plus 
the time increment from light “on” to the first pilot action to stop the airplane. 
 

(d)  tact 2 = the demonstrated time interval between initiation of the first and 
second pilot actions to stop the airplane. 

 
(e)   tact 3 = the demonstrated time interval between initiation of the second and 

third pilot actions to stop the airplane. 
 
(f)   tact 4n = the demonstrated time interval between initiation of the third and 

fourth (and any subsequent) pilot actions to stop the airplane.  For AFM expansion, a one-second 
reaction time delay to account for in-service variations should be added to the demonstrated time 
interval between the third and fourth (and any subsequent) pilot actions.  If a command is 
required for another crewmember to initiate an action to stop the airplane, a two-second delay, in 
lieu of the one-second delay, should be applied for each action.  For automatic deceleration 
devices that are approved for performance credit for AFM data expansion, established systems 
actuation times determined during certification testing may be used without the application of 
the additional time delays required by this paragraph. 

 
(g)   The sequence of pilot actions may be selected by the applicant, but it must 

match the sequence established for operation in service, as prescribed by § 25.101(f).  If, on 
occasion, the specified sequence is not achieved during testing, the test need not be discarded; 
however, sufficient testing should be conducted to establish acceptable values of tact. 

 
(h)   Section 25.109(a)(1)(iv) and (a)(2)(iii) require the one-engine-inoperative and 

all-engines-operating accelerate-stop distances, respectively, to include a distance increment 
equivalent to two seconds at V1.  (Although the requirement for the distance increment 
equivalent to two seconds at V1 is explicitly stated in the “dry runway” criteria of § 25.109, it is 
also applied to the “wet runway” accelerate-stop distances by reference in § 25.109(b).)  This 
distance increment is represented pictorially on the right side of the “Flight Manual Expansion 
Time Delays” presentation in Figure 11-1, and in the speed versus distance plot of Figure 11-2, 
on the following page.  The two-second time period is only provided as a method to calculate the 
required distance increment, and is not considered to be a part of the accelerate-stop braking 
transition sequence.  Consequently, no credit for pilot actions, or engine and systems transient 
responses (e.g., engine spin-down) may be taken during this two-second time period.  Similarly, 
the two-second time period may not be reduced for airplanes incorporating automated systems 
that decrease the number of pilot actions required to obtain the full braking configuration (e.g., 
automatic spoiler systems).  
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   Figure 11-2.  Accelerate-Stop Speed vs. Distance 
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(i)   Section 25.109(a)(1)(ii) requires that any residual acceleration causing the 
airplane to exceed V1, while the airplane and its systems become stabilized in the braking 
configuration, must be included in the accelerate-stop distance.  The effects of system transients, 
such as engine spin-down, brake pressure ramp-up, spoiler actuation times, etc., should be 
accounted for in this time period.  The area of interest is noted at the top of the graphical 
representation of the speed versus distance relationship in Figure 11-2. 

 
(j)   All-Engine Accelerate-Stop Distance.  For the all-engines-operating 

accelerate-stop distance prescribed by § 25.109(a)(2), apply the demonstrated time intervals, and 
associated delays, of paragraphs 11c(3)(d) through (f) after the airplane has accelerated to V1. 
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(k)   Describe the procedures used to determine the accelerate-stop distance in the 

performance section of the AFM. 
 

(4)   Wet Runway Accelerate-Stop Distance.  The following guidance is provided for 
showing compliance with the requirements stated in § 25.109(b) through (d) for determining 
accelerate-stop distances applicable to wet runways.  In general, the wet runway accelerate-stop 
distance is determined in a similar manner to the dry runway accelerate-stop distance.  The only 
differences are in reflecting the reduced stopping force available from the wheel brakes on the 
wet surface and in provisions for performance credit for the use of reverse thrust as an additional 
decelerating means.  The general method for determining the reduced stopping capability of the 
wheel brakes on a smooth wet runway is as follows:  First, determine the maximum tire-to-
ground wet runway braking coefficient of friction versus ground speed from the relationships 
provided in § 25.109(c)(1).  Then, adjust this braking coefficient to take into account the 
efficiency of the anti-skid system.  (See paragraph 11c(4)(b) of this AC for a definition of anti-
skid efficiency.  See paragraphs 11c(4)(b)2 and 3 for material on how to determine the wet 
runway anti-skid efficiency.)  Next, determine the resulting braking force and adjust this force 
for the effect of the distribution of the normal load between braked and unbraked wheels at the 
most adverse c.g. position approved for takeoff, as prescribed by § 25.109(b)(2)(ii).  (See 
paragraph 11c(4)(c) for a discussion of normal load distribution.)  In accordance with 
§ 25.109(b)(2)(i), apply further adjustments, if necessary, to ensure that the resulting stopping 
force attributed to the wheel brakes on a wet runway never exceeds (i.e., during the entire stop) 
the wheel brakes stopping force used to determine the dry runway accelerate-stop distance 
(under § 25.109(a)).  Neither the dry runway brake torque limit nor the dry runway friction (i.e., 
anti-skid) limit should be exceeded.  Alternative methods of determining the wet runway wheel 
brakes stopping force may be acceptable as long as that force does not exceed the force 
determined using the method just described. 
 

(a)   Maximum Tire-to-Ground Braking Coefficient of Friction.  The values 
specified in § 25.109(c)(1) were derived from data contained in Engineering Sciences Data Unit 
(ESDU) 71026, “Frictional and Retarding Forces on Aircraft Types - part II: Estimation of 
Braking Force,” (August 1981).  The data in ESDU 71026 is a compilation from many different 
sources, including the National Aeronautics and Space Administration, the British Ministry of 
Aviation, and others.  ESDU 71026 contains curves of wet runway braking coefficients versus 
speed for smooth and treaded tires at varying inflation pressures.  These data are presented for 
runways of various surface roughness, including grooved and porous friction course runways.  
Included in the data presentation are bands about each of the curves, which represent variations 
in:  water depths from damp to flooded, runway surface texture within the defined texture levels, 
tire characteristics, and experimental methods.  In defining the standard curves of wet runway 
braking coefficient versus speed that are prescribed by the equations in § 25.109(c)(1), the 
effects of the following variables were considered:  tire pressure, tire tread depth, runway surface 
texture, and the depth of the water on the runway. 
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1   Tire Pressure:  Lower tire pressures tend to improve the airplane’s 

stopping capability on a wet runway.  The effect of tire pressure is taken into account by 
providing separate curves (equations) in § 25.109(c)(1) for several tire pressures.  As stated in 
the rule, the tire pressure used to determine the maximum tire-to-ground braking coefficient of 
friction must be the maximum tire pressure approved for operation.  Linear interpolation may be 
used for tire pressures other than those listed. 

 
2   Tire Tread Depth:  The degree to which water can be channeled out from 

under the tires significantly affects wet runway stopping capability.  The standard curves of 
braking coefficient versus speed prescribed in § 25.109(c)(1) are based on a tire tread depth of 
2 mm.  This tread depth is consistent with tire removal and retread practices reported by airplane 
and tire manufacturers and tire retreaders.  It is also consistent with FAA guidance provided in 
AC 121.195(d)-1A, regarding the tread depth for tires used in flight tests to determine 
operational landing distances on wet runways.  Although operation with zero tread depth is not 
prohibited, it is unlikely that all of the tires on an airplane would be worn to the same extent. 

 
3   Runway Surface Texture:  ESDU 71026 groups runways into five 

categories.  These categories are labeled “A” through “E,” with “A” being the smoothest and 
“C” the most heavily textured ungrooved runways.  Categories “D” and “E” represent grooved 
and other open textured surfaces.  Category A represents a very smooth texture (an average 
texture depth of less than 0.004 inches), and is not very prevalent in runways used by transport 
category airplanes.  The majority of ungrooved runways fall into the category C grouping.  The 
curves represented in § 25.109(c)(1) represent a texture midway between categories B and C. 

 
4   Depth of Water on the Runway:  Obviously, the greater the water depth, 

the greater the degradation in braking capability.  The curves prescribed in § 25.109(c)(1) 
represent a well-soaked runway, but with no significant areas of standing water. 
 

(b)   Anti-Skid System Efficiency.  Section 25.109(c)(2) requires adjusting the 
maximum tire-to-ground braking coefficient determined in § 25.109(c)(1) to take into account 
the efficiency of the anti-skid system.  The anti-skid system efficiency is defined as the relative 
capability of the anti-skid system to obtain the maximum friction available between the tire and 
the runway surface.  It is expressed as either a percentage or a factor based on that percentage 
(e.g., 85 percent or 0.85).  Applicants can either use one of the anti-skid efficiency values 
specified in § 25.109(c)(2), or derive the efficiency from flight tests on a wet runway.  
Regardless of which method is used, § 25.109(c)(2) requires that an appropriate level of flight 
testing must be performed to verify that the anti-skid system operates in a manner consistent 
with the efficiency value used, and that the system has been properly tuned for operation on wet 
runways. 
 

1   Classification of Types of Anti-Skid Systems. 
 

(aa) The efficiency values specified in § 25.109(c)(2) are a function of 
the type of anti-skid system installed on the airplane.  Three broad system types are identified in 
the rule:  on/off, quasi-modulating, and fully modulating.  These classifications represent 
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evolving levels of technology and differing performance capabilities on dry and wet runways.  
The classification of anti-skid system types and the assigned efficiency values are based on 
information contained in Society of Automotive Engineers (SAE) Aerospace Information Report 
(AIR) 1739, titled “Information on Anti-Skid Systems.” 

 
(bb)  On/off systems are the simplest of the three types of anti-skid 

systems.  For these systems, full-metered brake pressure (as commanded by the pilot) is applied 
until wheel locking is sensed.  Brake pressure is then released to allow the wheel to spin back up.  
When the system senses that the wheel is accelerating back to synchronous speed (i.e., ground 
speed), full-metered pressure is again applied.  The cycle of full pressure application/complete 
pressure release is repeated throughout the stop (or until the wheel ceases to skid with pressure 
applied). 

 
(cc)  Quasi-modulating systems attempt to continuously regulate brake 

pressure as a function of wheel speed.  Typically, brake pressure is released when the wheel 
deceleration rate exceeds a pre-selected value.  Brake pressure is re-applied at a lower level after 
a length of time appropriate to the depth of the skid.  Brake pressure is then gradually increased 
until another incipient skid condition is sensed.  In general, the corrective actions taken by these 
systems to exit the skid condition are based on a pre-programmed sequence rather than the wheel 
speed time history. 

 
(dd)  Fully modulating systems are a further refinement of the quasi-

modulating systems.  The major difference between these two types of anti-skid systems is in the 
implementation of the skid control logic.  During a skid, corrective action is based on the sensed 
wheel speed signal, rather than a pre-programmed response.  Specifically, the amount of pressure 
reduction or reapplication is based on the rate at which the wheel is going into or recovering 
from a skid. 

 
(ee)  In addition to examining the control system for the differences noted 

above, a time history of the response characteristics of the anti-skid system during a wet runway 
stop should be used to help identify the type of anti-skid system.  Comparing the response 
characteristics between wet and dry runway stops can also be helpful. 

 
(ff)  Figure 11-3 shows an example of the response characteristics of a 

typical on-off system on both dry and wet runways.  In general, the on-off system exhibits a 
cyclic behavior of brake pressure application until a skid is sensed, followed by the complete 
release of brake pressure to allow the wheel to spin back up.  Full-metered pressure (as 
commanded by the pilot) is then re-applied, starting the cycle over again.  The wheel speed trace 
exhibits deep and frequent skids (the troughs in the wheel speed trace), and the average wheel 
speed is significantly less than the synchronous speed (which is represented by the flat-topped 
portions of the wheel speed trace).  Note that the skids are deeper and more frequent on a wet 
runway than on a dry runway.  For the particular example shown in Figure 11-3, the brake 
becomes torque-limited toward the end of the dry runway stop, and is unable to generate enough 
torque to cause further skidding. 
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(gg)  The effectiveness of quasi-modulating systems can vary 
significantly depending on the slipperiness of the runway and the design of the particular control 
system.  On dry runways, these systems typically perform very well; however, on wet runways 
their performance is highly dependent on the design and tuning of the particular system.  An 
example of the response characteristics of one such system is shown in Figure 11-4.  On both dry 
and wet runways, brake pressure is released to the extent necessary to control skidding.  As the 
wheel returns to the synchronous speed, brake pressure is quickly increased to a pre-determined 
level and then gradually ramped up to the full-metered brake pressure.  On a dry runway, this 
type of  response reduces the depth and frequency of skidding compared to an on-off system.  
However, on a wet runway, skidding occurs at a pressure below that at which the gradual 
ramping of brake pressure occurs.  As a result, on wet runways the particular system shown in 
Figure 11-4 operates very similarly to an on-off system. 
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Figure 11-3.  Anti-Skid System Response Characteristics 
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Figure 11-4.  Anti-Skid System Response Characteristics 
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 (hh)  When properly tuned, fully modulating systems are characterized 
by much smaller variations in brake pressure around a fairly high average value.  These systems 
can respond quickly to developing skids, and are capable of modulating brake pressure to reduce 
the frequency and depth of skidding.  As a result, the average wheel speed remains much closer 
to the synchronous wheel speed.  Figure 11-5 illustrates an example of the response 
characteristics of a fully modulating system on dry and wet runways.  
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Figure 11-5.  Anti-Skid System Response Characteristics 
 

Fully Modulating System 
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2   Demonstration of Anti-Skid System Operation When Using the Anti-
Skid Efficiency Values Specified in § 25.109(c)(2). 

 
(aa)  If the applicant elects to use one of the anti-skid efficiency values 

specified in § 25.109(c)(2), a limited amount of flight testing must still be conducted, per 
§ 25.109(c)(2), to demonstrate anti-skid system operation on a wet runway.  This testing should 
be used to verify that the anti-skid system operates in a manner consistent with the type of anti-
skid system declared by the applicant, and that the anti-skid system has been properly tuned for 
operation on wet runways. 

 
(bb)  A minimum of one complete stop, or equivalent segmented stops, 

should be conducted on a smooth (i.e., not grooved or porous friction course) wet runway at an 
appropriate speed and energy to cover the critical operating mode of the anti-skid system.  Since 
the objective of the test is to observe the operation (i.e., cycling) of the anti-skid system, this test 
will normally be conducted at an energy level well below the maximum brake energy condition. 

 
(cc)  The section of the runway used for braking should be well soaked 

(i.e., not just damp), but not flooded.  The runway test section should be wet enough to result in a 
number of cycles of anti-skid activity, but should not cause hydroplaning. 

 
(dd)  Before taxi and with cold tires, the tire pressure should be set to the 

highest value appropriate to the takeoff weight for which approval is being sought. 
 
(ee) The tires and brakes should not be new, but need not be in the fully 

worn condition.  They should be in a condition considered representative of typical in-service 
operations. 

 
(ff)  Sufficient data should be obtained to determine whether the system 

operates in a manner consistent with the type of anti-skid system declared by the applicant, 
provide evidence that full brake pressure is being applied upstream of the anti-skid valve during 
the flight test demonstration, determine whether the anti-skid valve is performing as intended, 
and show that the anti-skid system has been properly tuned for a wet runway.  Typically, the 
following parameters should be plotted versus time: 
 

(i) The speed of a representative number of wheels. 
 
(ii)   The hydraulic pressure at each brake (i.e., the hydraulic pressure 

downstream of the anti-skid valve or the electrical input to each anti-skid valve). 
 
(iii)  The hydraulic pressure at each brake metering valve (i.e., 

upstream of the anti-skid valve). 
 

(gg)  A qualitative assessment of anti-skid system response and airplane 
controllability should be made by the test pilot(s).  In particular, pilot observations should 
confirm that: 
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(i)  Anti-skid releases are neither excessively deep nor prolonged; 
 
(ii)  The landing gear is free of unusual dynamics; and 
 
(iii)  The airplane tracks essentially straight, even though runway 

seams, water puddles, and wetter patches may not be uniformly distributed in location or extent. 
 

3  Determination of a Specific Wet Runway Anti-Skid System Efficiency. 
 

(aa)  If the applicant elects to derive the anti-skid system efficiency from 
flight test demonstrations, sufficient flight testing, with adequate instrumentation, should be 
conducted to ensure confidence in the value obtained.  An anti-skid efficiency of 92 percent (i.e., 
a factor of 0.92) is considered to be the maximum efficiency on a wet runway normally 
achievable with fully modulating digital anti-skid systems. 

 
(bb)  A minimum of three complete stops, or equivalent segmented stops, 

should be conducted on a wet runway at appropriate speeds and energies to cover the critical 
operating modes of the anti-skid system.  Alternatively, if the operation and efficiency of the 
anti-skid system on a wet runway can be predicted by laboratory simulation data and validated 
by flight test demonstrations, a lesser number of stops may be acceptable.  In this case, as many 
complete stops, or equivalent segmented stops, as necessary to present six independent anti-skid 
efficiency calculations should be conducted on a wet runway at appropriate speeds and energies 
to cover the critical operating modes of the anti-skid system.  An independent anti-skid 
efficiency calculation can be presented for each stop for each independently controlled wheel, or 
set of wheels. 

 
(cc)  Since the objective of the test is to determine the efficiency of the 

anti-skid system, these tests will normally be conducted at energies well below the maximum 
brake energy condition.  A sufficient range of speeds should be covered to investigate any 
variation of the anti-skid efficiency with speed. 

 
(dd)  The testing should be conducted on a smooth (i.e., not grooved or 

porous friction course) runway.  If the applicant chooses to determine accelerate-stop distances 
for grooved and porous friction course (PFC) surfaces under § 25.109(d)(2), testing should also 
be conducted on a grooved or porous friction course runway to determine the anti-skid efficiency 
value applicable to those surfaces.  Other means for determining the anti-skid efficiency value 
for grooved and PFC surfaces may also be acceptable, such as using the efficiency value 
previously determined for smooth runways, if that value is shown to also be representative of or 
conservative for grooved and PFC runways. 

 
(ee)  The section of the runway used for braking should be well soaked 

(i.e., not just damp), but not flooded.  The runway test section should be wet enough to result in a 
number of cycles of anti-skid activity, but should not cause hydroplaning. 

 
(ff)  Before taxi and with cold tires, the tire pressure should be set to the 

highest value appropriate to the takeoff weight for which approval is being sought. 
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(gg)  The tires and brakes should not be new, but need not be in the fully 

worn condition.  They should be in a condition considered representative of typical in-service 
operations. 

 
(hh)  A qualitative assessment of anti-skid system response and airplane 

controllability should be made by the test pilot(s).  In particular, pilot observations should 
confirm that: 
 

(i)  The landing gear is free of unusual dynamics; and 
 

(ii)  The airplane tracks essentially straight, even though runway 
seams, water puddles, and wetter patches may not be uniformly distributed in location or extent. 
 
    4   Two acceptable methods, referred to as the torque method and the wheel 
slip method, for determining the wet runway anti-skid efficiency value from wet runway 
stopping tests are described below.  Other methods may also be acceptable if they can be shown 
to give equivalent results.  The test instrumentation and data collection should be consistent with 
the method used. 

 
 (aa) Torque Method: 

 
      (i)   Under the torque method, the anti-skid system efficiency is 
determined by comparing the energy absorbed by the brake during an actual wet runway stop to 
the energy that is determined by integrating, over the stopping distance, a curve defined by 
connecting the peaks of the instantaneous brake force curve (see Figure 11-6).  The energy 
absorbed by the brake during the actual wet runway stop is determined by integrating the curve 
of instantaneous brake force over the stopping distance. 
 

Figure 11-6.  Instantaneous Brake Force and Peak Brake Force 
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      (ii)  Using data obtained from the wet runway stopping tests of 
paragraph 11c(4)(b)(3), instantaneous brake force can be calculated from the following 
relationship: 
 

 
tire

b
b R

IT
F


  

 
where:   Fb =  brake force 
   Tb =  brake torque 
    =  wheel acceleration 
   I =  wheel and tire moment of inertia 
 and  Rtire =  tire radius. 

 
      (iii) For brake installations where measuring brake torque directly is 
impractical, torque may be determined from other parameters (e.g., brake pressure) if a suitable 
correlation is available.  Wheel acceleration is obtained from the first derivative of wheel speed.  
Instrumentation recording rates and data analysis techniques for wheel speed and torque data 
should be well matched to the anti-skid response characteristics to avoid introducing noise and 
other artifacts of the instrumentation system into the data. 
 
      (iv)  Since the derivative of wheel speed is used in calculating brake 
force, smoothing of the wheel speed data is usually necessary to give good results.  The 
smoothing algorithm should be carefully designed as it can affect the resulting efficiency 
calculation.  Filtering or smoothing of the brake torque or brake force data should not normally 
be done.  If conditioning is applied, it should be done in a conservative manner (i.e., result in a 
lower efficiency value) and should not misrepresent actual airplane/system dynamics. 
 
      (v)  Both the instantaneous brake force and the peak brake force 
should be integrated over the stopping distance.  The anti-skid efficiency value for determining 
the wet runway accelerate-stop distance is the ratio of the instantaneous brake force integral to 
the peak brake force integral: 

 instantaneous brake forceds 
 
 
where s = stopping distance 

 
      (vi)  The stopping distance is defined as the distance traveled during 
the specific wet runway stopping demonstration, beginning when the full braking configuration 
is obtained and ending at the lowest speed at which anti-skid cycling occurs (i.e., the brakes are 
not torque-limited), except that this speed need not be less than 10 knots.  Any variation in the 
anti-skid efficiency with speed should also be investigated, which can be accomplished by 
determining the efficiency over segments of the total stopping distance.  If significant variations 
are noted, this variation should be reflected in the braking force used to determine the accelerate-
stop distances (either by using a variable efficiency or by using a conservative single value). 
 


 

anti-skid efficiency = 
      peak brake forceds
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     (bb)   Wheel Slip Method: 
 

(i)  At brake application, the tire begins to slip with respect to 
the runway surface (i.e., the wheel speed slows down with respect to the airplane’s ground 
speed).  As the amount of tire slip increases, the brake force also increases until an optimal slip is 
reached.  If the amount of slip continues to increase past the optimal slip, the braking force will 
decrease. 

 
(ii)  Using the wheel slip method, the anti-skid efficiency is 

determined by comparing the actual wheel slip measured during a wet runway stop to the 
optimal slip.  Since the wheel slip varies significantly during the stop, sufficient wheel and 
ground speed data should be obtained to determine the variation of both the actual wheel slip and 
the optimal wheel slip over the length of the stop.  A sampling rate of at least 16 samples per 
second for both wheel speed and ground speed has been found to yield acceptable fidelity. 

 
(iii)  For each wheel and ground speed data point, the 

instantaneous anti-skid efficiency value should be determined from the relationship shown in 
Figure 11-7. 
 

Figure 11-7.  Anti-Skid Efficiency – Wheel Slip Relationship 
 

  

Wheel Slip Ratio0 
free

rolling 

1 
locked
wheel 

1.0 

0 

Optimal Slip

0.5 
Anti-Skid 

Efficiency 

 
 
 

  

 
 

ratio slip optimal  theis OPS       and

speed Ground

speed Wheel
1=ratio slip  wheelthe=  WSRwhere

OPS1

WSR1
+10.5=Efficiency   OPS>WSR

1.0=Efficiency   OPS=WSR

OPS

WSR
5.0

OPS

WSR
5.1=Efficiency   OPS<for   WSR

3





































 

 53 



10/16/12  AC 25-7C 

 
(iv)  To determine the overall anti-skid efficiency value for use 

in calculating the wet runway accelerate-stop distance, the instantaneous anti-skid efficiencies 
should be integrated with respect to distance and divided by the total stopping distance: 

 

 instantaneous brake forceds
 
 
where s = stopping distance 

 
(v)  The stopping distance is defined as the distance traveled 

during the specific wet runway stopping demonstration, beginning when the full braking 
configuration is obtained and ending at the lowest speed at which anti-skid cycling occurs (i.e., 
the brakes are not torque-limited), except that this speed need not be less than 10 knots.  Any 
variation in the anti-skid efficiency with speed should also be investigated, which can be 
accomplished by determining the efficiency over segments of the total stopping distance.  If 
significant variations are noted, this variation should be reflected in the braking force used to 
determine the accelerate-stop distances (either by using a variable efficiency or by using a 
conservative single value). 

 
(vi)  The applicant should provide substantiation of the optimal 

wheel slip value(s) used to determine the anti-skid efficiency value.  An acceptable method for 
determining the optimal slip value(s) is to compare time history plots of the brake force and 
wheel slip data obtained during the wet runway stopping tests.  For brake installations where 
measuring brake force directly is impractical, brake force may be determined from other 
parameters (e.g., brake pressure) if a suitable correlation is available.  For those skids where 
wheel slip continues to increase after a reduction in the brake force, the optimal slip is the slip 
value corresponding to the brake force peak.  See Figure 11-8 for an example and note how both 
the actual wheel slip and the optimal wheel slip can vary during the stop. 
 

 
                      s anti-skid efficiency = 
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Figure 11-8.  Substantiation of The Optimal Slip Value 
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5   For dispatch with an inoperative anti-skid system (if approved), the wet 
runway accelerate-stop distances should be based on an efficiency no higher than that allowed by 
§ 25.109(c)(2) for an on-off type of anti-skid system.  The safety of this type of operation should 
be demonstrated by flight tests conducted in accordance with paragraph 11c(4)(b)(2). 
 

(c)   Distribution of the Normal Load Between Braked and Unbraked Wheels.  In 
addition to taking into account the efficiency of the anti-skid system, § 25.109(b)(2)(ii) also 
requires adjusting the braking force for the effect of the distribution of the normal load between 
braked and unbraked wheels at the most adverse c.g. position approved for takeoff.  The 
stopping force due to braking is equal to the braking coefficient multiplied by the normal load 
(i.e., weight) on each braked wheel.  The portion of the airplane’s weight being supported by the 
unbraked wheels (e.g., unbraked nose wheels) does not contribute to the stopping force 
generated by the brakes.  In accordance with § 25.21(a), this effect must be taken into account 
for the most adverse c.g. position approved for takeoff, considering any redistribution in loads 
that occur due to the dynamics of the stop.  The most adverse c.g. position is the position that 
results in the least load on the braked wheels. 
 

(d)   Grooved and Porous Friction Course (PFC) Runways.  Properly designed, 
constructed, and maintained grooved and PFC runways can offer significant improvements in 
wet runway braking capability.  A conservative level of performance credit is provided by 
§ 25.109(d) to reflect this performance improvement and to provide an incentive for installing 
and maintaining such surfaces. 
 
    1   In accordance with §§ 25.105(c) and 25.109(d), applicants may optionally 
determine the accelerate-stop distance applicable to wet grooved and PFC runways.  These data 
would be included in the AFM in addition to the smooth runway accelerate-stop distance data.  
The braking coefficient for determining the accelerate-stop distance on grooved and PFC 
runways is defined in § 25.109(d) as either 70 percent of the braking coefficient used to 
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determine the dry runway accelerate-stop distances, or a curve based on ESDU 71026 data and 
derived in a manner consistent with that used for smooth runways.  In either case, the brake 
torque limitations determined on a dry runway may not be exceeded. 
 
    2   Using a simple factor applied to the dry runway braking coefficient is 
acceptable for grooved and PFC runways because the braking coefficient’s variation with speed 
is much lower on these types of runways.  On smooth wet runways, the braking coefficient 
varies significantly with speed, which makes it inappropriate to apply a simple factor to the dry 
runway braking coefficient. 
 
    3   For applicants who choose to determine the grooved/PFC wet runway 
accelerate-stop distances in a manner consistent with that used for smooth runways, 
§ 25.109(d)(2) provides the maximum tire-to-ground braking coefficient applicable to grooved 
and PFC runways.  This maximum tire-to-ground braking coefficient must be adjusted for the 
anti-skid system efficiency, either by using the value specified in § 25.109(c)(2) appropriate to 
the type of anti-skid system installed, or by using a specific efficiency established by the 
applicant.  As anti-skid system performance depends on the characteristics of the runway 
surface, a system that has been tuned for optimum performance on a smooth surface may not 
achieve the same level of efficiency on a grooved or porous friction course runway, and vice 
versa.  Consequently, if the applicant elects to establish a specific efficiency for use with 
grooved or PFC surfaces, anti-skid efficiency testing should be conducted on a wet runway with 
such a surface, in addition to testing on a smooth runway.  Means other than flight testing may 
be acceptable, such as using the efficiency previously determined for smooth wet runways, if 
that efficiency is shown to be representative of, or conservative for, grooved and PFC runways.  
Per § 25.109(b)(2)(ii), the resulting braking force for grooved/PFC wet runways must be 
adjusted for the effect of the distribution of the normal load between braked and unbraked 
wheels.  This adjustment will be similar to that used for determining the braking force for 
smooth wet runways, except that the braking dynamics should be appropriate to the braking 
force achieved on grooved and PFC wet runways.  Due to the increased braking force on 
grooved and PFC wet runways, an increased download on the nose wheel and corresponding 
reduction in the download on the main gear is expected. 
 
    4  In accordance with §§ 25.1533(a)(3) and 25.1583(h), grooved and PFC wet 
runway accelerate-stop distances may be established as operating limitations and be presented in 
the AFM, but approval to use these distances is limited to runways that have been designed, 
constructed, and maintained in a manner acceptable to the FAA Administrator.  Airplane 
operators who wish to use the grooved or PFC runway accelerate-stop distances will need to 
determine that the design, construction, and maintenance aspects are acceptable for each runway 
for which such credit is sought.  AC 150/5320-12C, “Measurement, Construction, and 
Maintenance of Skid-Resistant Airport Pavement Surfaces,” provides guidance relative to 
acceptable design, construction, and maintenance practices for grooved and PFC runway 
surfaces. 
 

(e)   Reverse thrust performance credit.  In accordance with § 25.109(f), reverse 
thrust may not be used to determine the accelerate-stop distances for a dry runway.  For wet 
runway accelerate-stop distances, however, § 25.109(f) allows credit for the stopping force 
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provided by reverse thrust, if the requirements of § 25.109(e) are met.  In addition, the 
procedures associated with the use of reverse thrust, which § 25.101(f) requires the applicant to 
provide, must meet the requirements of § 25.101(h).  The following criteria provide acceptable 
means of demonstrating compliance with these requirements: 
 

1   Procedures for using reverse thrust during a rejected takeoff should be 
developed and demonstrated.  These procedures should include all of the pilot actions necessary 
to obtain the recommended level of reverse thrust, maintain directional control and safe engine 
operating characteristics, and return the reverser(s), as applicable, to either the idle or the stowed 
position.  These procedures need not be the same as those recommended for use during a landing 
stop, but should not result in additional hazards (e.g., cause a flameout or any adverse engine 
operating characteristics), nor should they significantly increase flightcrew workload or training 
needs. 
 

2   It should be demonstrated that using reverse thrust during a rejected 
takeoff complies with the engine operating characteristics requirements of § 25.939.  The reverse 
thrust procedures may specify a speed at which the reverse thrust is to be reduced to idle in order 
to maintain safe engine operating characteristics. 

 
3   The time sequence for the actions necessary to obtain the recommended 

level of reverse thrust should be demonstrated by flight test.  The time sequence used to 
determine the accelerate-stop distances should reflect the most critical case relative to the time 
needed to deploy the thrust reversers.  For example, on some airplanes the outboard thrust 
reversers are locked out if an outboard engine fails.  This safety feature prevents the pilot from 
applying asymmetric reverse thrust on the outboard engines, but it may also delay the pilot’s 
selection of reverse thrust on the operable reversers.  In addition, if the selection of reverse thrust 
is the fourth or subsequent pilot action to stop the airplane (e.g., after manual brake application, 
thrust/power reduction, and spoiler deployment), a one-second delay should be added to the 
demonstrated time to select reverse thrust (see Figure 11-1). 

 
4   The response times of the affected airplane systems to pilot inputs should 

be taken into account.  For example, delays in system operation, such as thrust reverser 
interlocks that prevent the pilot from applying reverse thrust until the reverser is deployed, 
should be taken into account.  The effects of transient response characteristics, such as reverse 
thrust engine spin-up, should also be included. 

 
5   To enable a pilot of average skill to consistently obtain the recommended 

level of reverse thrust under typical in-service conditions, a lever position that incorporates 
tactile feedback (e.g., a detent or stop) should be provided.  If tactile feedback is not provided, a 
conservative level of reverse thrust should be assumed. 

 
6   The applicant should demonstrate that exceptional skill is not required to 

maintain directional control on a wet runway with a ten-knot crosswind from the most adverse 
direction.  For demonstration purposes, a wet runway may be simulated by using a nose wheel 
free to caster on a dry runway.  Symmetric braking should be used during the demonstration, and 
both all-engines-operating and critical-engine-inoperative reverse thrust should be considered.  
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The brakes and thrust reversers may not be modulated to maintain directional control.  The 
reverse thrust procedures may specify a speed at which the reverse thrust is reduced to idle in 
order to maintain directional controllability. 

 
7   Compliance with the requirements of §§ 25.901(b)(2), 25.901(c), 

25.1309(b), and 25.1309(c) will be accepted as providing compliance with the “safe and 
reliable” requirements of §§ 25.101(h)(2) and 25.109(e)(1). 

 
8   The number of thrust reversers used to determine the wet runway 

accelerate-stop distance data provided in the AFM should reflect the number of engines assumed 
to be operating during the rejected takeoff, along with any applicable system design features.  
The all-engines-operating accelerate-stop distances should be based on all thrust reversers 
operating.  The one-engine-inoperative accelerate-stop distances should be based on failure of 
the critical engine.  For example, if the outboard thrust reversers are locked out when an 
outboard engine fails, the one-engine-inoperative accelerate stop distances can only include 
reverse thrust from the inboard engine thrust reversers. 

 
9   For the engine failure case, it should be assumed that the thrust reverser 

does not deploy (i.e., no reverse thrust or drag credit for deployed thrust reverser buckets on the 
failed engine). 

 
10   For approval of dispatch with one or more inoperative thrust reverser(s), 

the associated performance information should be provided either in the AFM or the master 
minimum equipment list (MMEL). 

 
11   The effective stopping force provided by reverse thrust in each, or at the 

option of the applicant, the most critical takeoff configuration, should be demonstrated by flight 
test.  (One method of determining the reverse thrust stopping force would be to compare 
unbraked runs with and without the use of thrust reversers.)  Regardless of the method used to 
demonstrate the effective stopping force provided by reverse thrust, flight test demonstrations 
should be conducted using all of the stopping means on which the AFM wet runway accelerate-
stop distances are based in order to substantiate the accelerate-stop distances and ensure that no 
adverse combination effects are overlooked.  These demonstrations may be conducted on a dry 
runway. 

 
12   For turbopropeller powered airplanes, the criteria of paragraphs 1 through 

11 above remain generally applicable.  Additionally, the propeller of the inoperative engine 
should be in the position it would normally assume when an engine fails and the power lever is 
closed.  Reverse thrust may be selected on the remaining engine(s).  Unless this selection is 
achieved by a single action to retard the power lever(s) from the takeoff setting without 
encountering a stop or lockout, it should be regarded as an additional pilot action for the 
purposes of assessing delay times.  If this action is the fourth or subsequent pilot action to stop 
the airplane, a one-second delay should be added to the demonstrated time to select reverse 
thrust. 
 
12. Takeoff Path - § 25.111. 
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a.   Section 25.111(a). 

 
  (1)   Explanation.  The takeoff path requirements of § 25.111, and the reductions to that 
path required by § 25.115, are established so that performance data can be provided in the AFM 
for use in assessing vertical clearance of obstacles under the takeoff flight path.   
 
  (2)  Procedures.  The height references in § 25.111 should be interpreted as geometric 
heights.  Section 25.111(a) requires the actual takeoff path (from which the net takeoff 
flight path is derived) to extend to the higher of where the airplane is 1,500 ft. above the takeoff 
surface or to the altitude at which the transition to en route configuration is complete and the 
final takeoff speed (VFTO) is reached. 
 

b.   Section 25.111(a)(1) - Takeoff Path Power/Thrust Conditions. 
 

(1)   Explanation.  In accordance with § 25.111(d), the takeoff path must be established 
either from continuous demonstrated takeoffs or by synthesis from segments.  If determined from 
segments, it must be shown by continuous demonstrated takeoff to be conservative, per 
§ 25.111(d)(4). 

 
(2)  Procedures. 

 
(a)   To be assured that the predicted takeoff path is representative of actual 

performance, construct the path using the power or thrust required by § 25.101(c).  This requires, 
in part, that the power or thrust be based on the particular ambient atmospheric conditions that 
are assumed to exist along the path.  The standard lapse rate for ambient temperature as specified 
in the 1962 U.S. Standard Atmosphere part 1 should be used for power or thrust determination 
associated with each pressure altitude during the climb. 

 
(b)   In accordance with § 25.111(c)(4), the power or thrust up to 400 ft. above the 

takeoff surface must represent the power or thrust available along the path resulting from the 
power lever setting established during the initial ground roll in accordance with AFM 
procedures.  This resulting power or thrust may be less than that available from the rated inflight 
setting schedule. 

 
(c)   A sufficient number of takeoffs, to at least the altitude above the takeoff 

surface scheduled for V2 climb, should be made to establish the power or thrust lapse for a fixed 
power or thrust lever setting.  An analysis may be used to account for various engine bleeds 
(e.g., ice protection, air conditioning, etc.) and for electrical, pneumatic, and mechanical power 
extraction.  In some airplanes, the power or thrust growth characteristics are such that less than 
full rated power or thrust is used for AFM takeoff power/thrust limitations and performance.  
This is to preclude engine limitations from being exceeded during the takeoff climbs to 400 ft. 
above the takeoff surface. 

 
(d)   Engine power or thrust lapse with speed and altitude during the takeoff and 

climb, at fixed power or thrust lever settings), can be affected by takeoff pressure altitude. 
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(e)   Most turbine engines are sensitive to crosswind or tailwind conditions, when 

setting takeoff power under static conditions, and may stall or surge.  To preclude this problem, 
it is acceptable to establish a rolling takeoff power or thrust setting procedure, provided the AFM 
takeoff field length and the takeoff power or thrust setting charts are based on this procedure.  
Demonstrations and analyses have been accepted in the past showing a negligible difference in 
distance between static and rolling takeoffs.  A typical test procedure is as follows: 
 

1   After stopping on the runway, set an intermediate power or thrust on all 
engines (power setting selected by applicant). 
 

2   Release brakes and advance power or thrust levers. 
 

 3   Set target power or thrust setting as rapidly as possible prior to reaching 
60 to 80 knots. 
 

4   No adverse engine operating characteristics should exist after completion 
of the power setting through the climb to 1,500 ft. above the airport and attainment of the en 
route configuration.  Tests should be conducted to determine if any engine operating problems 
exist for takeoffs conducted throughout the altitude range for which takeoff operations are to be 
scheduled in the AFM. 
 

(f) If the applicant wishes to use a different procedure, it should be evaluated and, 
if found acceptable, the procedure should be reflected in the AFM. 
 

c.  Section 25.111(a)(2) - Engine Failure. 
 
  (1) Explanation. 
 

(a)   Since the regulations cannot dictate what type of engine failures may actually 
occur, it could be assumed that the engine failure required by the regulation occurs 
catastrophically.  Such a failure would cause the power or thrust to drop immediately, with the 
associated performance going from all-engines-operating to one-engine-inoperative at the point 
of engine failure. 

 
(b)   This conservative rationale notwithstanding, there is a basis for assuming that 

the failed engine power or thrust will not decay immediately.  Unlike reciprocating engines, the 
locking-up of a jet engine fan without causing the engine to separate from the airplane is highly 
unlikely.  Separation of the engine or fan, or fan disintegration, would remove weight and/or the 
ram drag included in the engine inoperative performance, providing compensation for the 
immediate thrust loss. 

 
(c)   With these considerations, it may be acceptable to use the transient power or 

thrust as the failed engine spools down at VEF.  The power or thrust time history used for data 
reduction and expansion should be substantiated by test results. 
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(d)   In the case of propeller-driven airplanes, consideration should also be given to 
the position of the failed engine’s propeller during the engine failure.  These airplanes typically 
incorporate an automatic system to drive the propeller to a low drag position when an engine 
fails.  The loss of power in this case will be much more sudden than the turbojet engine 
spooldown described above. 
 
  (2)   Procedures. 
 

(a) For turbojet powered airplanes, if transient thrust credit is used during engine 
failure in determining the one-engine-inoperative AFM takeoff performance, sufficient tests 
should be conducted using actual fuel cuts to establish the thrust decay as contrasted to idle 
engine cuts.  For derivative programs not involving a new or modified engine type (i.e., a 
modification that would affect thrust decay characteristics), fuel cuts are unnecessary if thrust 
decay characteristics have been adequately substantiated. 

 
(b)   For propeller driven airplanes, the use of fuel cuts can be more important in 

order to ensure that the takeoff speeds and distances are obtained with the critical engine’s 
propeller attaining the position it would during a sudden engine failure.  The number of tests that 
should be conducted using fuel cuts, if any, depends on the correlation obtained with the idle cut 
data and substantiation that the data analysis methodology adequately models the effects of a 
sudden engine failure. 
 

d.   Section 25.111(a)(3) - Airplane Acceleration. 
 

(1)   Explanation.  None. 
 
(2)   Procedures.  None. 

 
e.   Section 25.111(b) - Airplane Rotation and Gear Retraction. 

 
(1)   Explanation.  The rotation speed, VR, is intended to be the speed at which the pilot 

initiates action to raise the nose wheel(s) off the ground during the acceleration to V2.  
Consequently, the takeoff path, determined in accordance with § 25.111(a) and (b), should 
assume that pilot action to raise the nose wheel(s) off the ground will not be initiated until the 
speed VR has been reached. 

 
(2)   Procedures.  The time between liftoff and initiation of gear retraction during 

takeoff distance demonstrations should not be less than that necessary to establish an indicated 
positive rate of climb plus one second.  For the purposes of flight manual expansion, the average 
demonstrated time delay between liftoff and initiation of gear retraction may be assumed; 
however, this value should not be less than 3 seconds. 
 

f.   Section 25.111(c)(1) - Takeoff Path Slope. 
 

(1)   Explanation. 
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(a) Establishing a horizontal segment as part of the takeoff flight path is 
considered to be acceptable, per § 25.115(c), for showing compliance with the positive slope 
required by § 25.111(c)(1). 

 
(b)   The net takeoff flight path is the flight path used to determine compliance with 

the airplane obstacle clearance requirements of the applicable operating rules.  Section 25.115(b) 
states the required climb gradient reduction to be applied throughout the flight path for the 
determination of the net flight path, including the level flight acceleration segment.  Rather than 
decreasing the level flight path by the amount required by § 25.115(b), § 25.115(c) allows the 
airplane to maintain a level net flight path during acceleration, but with a reduction in 
acceleration equal to the gradient decrement required by § 25.115(b).  By this method, the 
altitude reduction is exchanged for increased distance to accelerate in the level flight portion of 
the net takeoff path. 
 
  (2)   Procedures.  The level acceleration segment in the AFM net takeoff profile should 
begin at the horizontal distance along the takeoff flight path where the actual airplane height, 
without the gradient reductions of § 25.115(b), reaches the AFM specified acceleration height. 

 
g.   Section 25.111(c)(2) - Takeoff Path Speed. 

 
(1)   Explanation. 

 
   (a) It is intended that the airplane be flown at a constant indicated airspeed to at 
least 400 ft. above the takeoff surface.  This speed must meet the constraints on V2 of 
§ 25.107(b) and (c). 
 
   (b)   The specific wording of § 25.111(c)(2) should not be construed to imply that 
above 400 ft. the airspeed may be reduced below V2, but instead that acceleration may be 
commenced. 
 

(2)   Procedures. 
 

(a) For those airplanes that take advantage of reduced stall speeds at low pressure 
altitude, the scheduling of V2 should not be factored against the stall speed obtained at the 
takeoff surface pressure altitude.  Such a procedure would result in a reduced stall speed margin 
during the climb, which would be contrary to the intent of § 25.107(b). 

 
(b)   For those airplanes mentioned in paragraph (a), above, the V2 should be 

constrained, in addition to the requirements of § 25.107(b) and (c), by the stall speed 1,500 ft. 
above the takeoff surface.  Weight reduction along the takeoff path, due to fuel burn, may be 
considered in the calculation of the stall speed ratios, provided it is well established.  However, 
many applicants have measured stall speeds at 10,000 to 15,000 ft., which provides a 
conservative stall margin at lower takeoff field pressure altitudes. 
 

h.   Section 25.111(c)(3) - Required Gradient. 
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(1) Explanation.  None. 
 

(2) Procedures.  None. 
 

i.   Section 25.111(c)(4) - Configuration Changes. 
 

(1) Explanation. 
 

(a) The intent of this requirement is to permit only those crew actions that are 
conducted routinely to be used in establishing the one-engine-inoperative takeoff path.  The 
power/thrust levers may only be adjusted early during the takeoff roll and then left fixed until at 
least 400 ft. above the takeoff surface. 

 
(b)   Simulation studies and accident investigations have shown that when high 

workload occurs in the cockpit, as with an engine failure during takeoff, the crew might not 
advance the power/thrust on the operative engines, even if the crew knows the operative engines 
have been set at reduced power/thrust and a power/thrust increase is needed for terrain 
avoidance.  This same finding applies to manually feathering a propeller.  The landing gear may 
be retracted, however, as this is accomplished routinely once a positive rate of climb is observed.  
Also, automatic propeller feathering is specifically allowed by the rule.  Guidance related to 
performance credit for automatic propeller feathering is provided in paragraph 12i(2), 
Procedures, below. 

 
(c)   Although performance credit for pilot action to increase power/thrust below 

400 feet above the takeoff surface is not permitted, performance credit is allowed for an 
automatic power advance.  Automatic takeoff thrust control systems are addressed in § 25.904, 
and the related performance requirements are described in Appendix I to part 25. 
 

(2) Procedures. 
 

(a) Propeller pitch setting generally has a significant effect on minimum control 
speeds and airplane drag.  The magnitude of these effects is such that continued safe flight may 
not be possible should a combined failure of an engine and its automatic propeller feathering 
system occur at a takeoff speed based on operation of that system.  When this is the case, 
§ 25.1309(b)(1) requires the probability of this combined failure to be extremely improbable (on 
the order of 10-9 per flight hour). 

 
(b)   In determining the combined engine and automatic propeller drag reduction 

system failure rate of paragraph 12i(2)(a) above, the engine failure rate should be substantiated.  
Notwithstanding the in-service engine failure rate, the failure of the automatic propeller drag 
reduction system should be shown not to exceed 10-4 per flight hour. 

 
(c)   The automatic propeller feathering system should be designed so that it will 

automatically be disabled on the operating engine(s) following its activation on the failed engine.  
The probability of an unwanted operation of the automatic propeller drag reduction system on an 
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operating engine, following its operation on the failed engine, should be shown to be extremely 
improbable (on the order of 10-9 per flight hour). 

 
(d)   If performance credit is given for operation of the automatic propeller 

feathering system in determining the takeoff distances, the propeller of the failed engine must 
also be assumed to be in the reduced drag position in determining the accelerate-stop distances. 

 
(e)   The limitations section of the AFM should require the flightcrew to perform a 

functional check of the automatic propeller feathering system.  The frequency with which 
flightcrew functional checks and ground maintenance checks must be performed should be 
considered in the evaluation of the system reliability. 

 
(f)   Clear annunciations should be provided to the flightcrew to indicate the 

following: 
 

1 When the automatic propeller drag reduction system is “ARMED.” 
 
2   When a malfunction exists in the automatic propeller feathering system. 

 
j. Section 25.111(d) - Takeoff Path Construction. 

 
(1)   Explanation.  This regulation should not be construed to mean that the takeoff path 

must be constructed entirely from a continuous demonstration or entirely from segments.  To 
take advantage of ground effect, typical AFM takeoff paths use a continuous takeoff path from 
VLOF to the gear up point, covering the range of thrust-to-weight ratios.  From that point free air 
performance, in accordance with § 25.111(d)(2), is added segmentally.  This methodology may 
yield an AFM flight path that is steeper with the gear down than up. 
 
  (2)  Procedures.  The AFM should include the procedures necessary to achieve this 
performance. 
 

k. Section 25.111(d)(1) - Takeoff Path Segment Definition. 
 

(1)   Explanation.  None. 
 
(2)   Procedures.  None. 

 
l.   Section 25.111(d)(2) - Takeoff Path Segment Conditions. 

 
(1)   Explanation.  The subject paragraph states “The weight of the airplane, the 

configuration, and the power or thrust must be constant throughout each segment and must 
correspond to the most critical condition prevailing in the segment.”  The intent is that, for 
simplified analysis, the performance is based on that value available at the most critical point in 
time during the segment, not that the individual variables (weight, approximate power or thrust 
setting, etc.) are each picked at their most critical value and then combined to produce the 
performance for the segment. 
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(2)   Procedures.  The performance during the takeoff path segments should be obtained 

using one of the following methods: 
 

(a)   The critical level of performance as explained in paragraph (1); 
 

(b)   The average performance during the segment; or 
 

(c)   The actual performance variation during the segment. 
 

m.  Section 25.111(d)(3) - Segmented Takeoff Path Ground Effect. 
 

(1) Explanation.  This requirement does not intend the entire flight path to necessarily 
be based upon out-of-ground-effect performance simply because the continuous takeoff 
demonstrations have been broken into sections for data reduction expediency.  For example, if 
the engine inoperative acceleration from VEF to VR is separated into a power or thrust decay 
portion and a windmilling drag portion, the climb from 35 ft. to gear up does not necessarily 
need to be based upon out-of-ground-effect performance.  (Also, see the explanation of 
§ 25.111(d) in paragraph 12j(1) of this AC.) 
 

(2) Procedures.  None 
 

n.  Section 25.111(d)(4) - Segmented Takeoff Path Check. 
 

(1) Explanation.  None. 
 

(2) Procedures.  If the construction of the takeoff path from brake release to out-of-
ground-effect contains any portions that have been segmented (e.g., airplane acceleration 
segments with all-engines-operating and one-engine-inoperative), the path should be checked by 
continuous demonstrated takeoffs.  A sufficient number of these, employing the AFM 
established takeoff procedures and speeds and covering the range of thrust-to-weight ratios, 
should be made to ensure the validity of the segmented takeoff path.  The continuous takeoff 
data should be compared to takeoff data calculated by AFM data procedures, but using test 
engine thrusts and test speeds. 
 

o.  Section 25.111(e) - Flight Path with Standby Power Rocket Engines.  [Reserved] 
 
13. Takeoff Distance and Takeoff Run - § 25.113. 
 

a.   Takeoff Distance on a Dry Runway - § 25.113(a). 
 

(1) The takeoff distance on a dry runway is the longer of the two distances described in 
(a) and (b) below.  The distances indicated below are measured horizontally from the main 
landing gears at initial brake release to that same point on the airplane when the lowest part of 
the departing airplane is 35 ft. above the surface of the runway. 
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(a) The distance measured to 35 ft. with a critical engine failure occurring at VEF 
as shown in Figure 13-1.  

  
Figure 13-1.  Takeoff Distance On a Dry Runway 

 
Critical Engine Fails at VEF 

  
                                                                                                                                                          
 

(b)  One hundred fifteen (115) percent of the distance measured to the 35 ft. height 
above the takeoff surface with all-engines-operating as shown in Figure 13-2.  In establishing the 
all-engines-operating takeoff distance, § 25.113(a)(2) requires the distance to be “...determined 
by a procedure consistent with § 25.111” (Takeoff Path).  The interpretation of this statement is 
that the all-engines-operating takeoff distance should: 
 

1   Be based on the airplane reaching a speed of V2 before it is 35 feet above 
the takeoff surface; and 
 

2   Be consistent with the achievement of a smooth transition to the steady 
initial climb speed at a height of 400 feet above the takeoff surface. 
 

 Figure 13-2.  Takeoff Distance 
 

            (All-Engines-Operating) 
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(2)   In accordance with § 25.101(f), the takeoff distance must be based on the 
procedures established for operation in service. 

 
b.  Takeoff Distance on a Wet Runway - § 25.113(b). 

 
(1)   The takeoff distance on a wet runway is the longer of the takeoff distance on a dry 

runway (using the dry runway V1 speed), determined in accordance with paragraphs 13a(1)(a) 
and (b) of this AC, or the distance on a wet runway using a reduced screen height (and the wet 
runway V1 speed) as described in paragraph (2), below. 

 
(2)   The takeoff distance on a wet runway is determined as the horizontal distance the 

main landing gear travels from brake release to the point where the lowest part of the airplane is 
15 ft. above the takeoff surface.  The airplane must attain a height of 15 ft. above the takeoff 
surface in a manner that will allow V2 to be achieved before reaching a height of 35 ft. above the 
takeoff surface in accordance with § 25.113(b)(2) and as shown in Figure 13-3. 
 

Figure 13-3.  Takeoff Distance On A Wet Runway 
 

Critical Engine Fails at VEF 
 

 
 
 

c.  Takeoff Run - § 25.113(c). 
 

(1)  The concept of takeoff run was introduced by SR-422A to allow credit for a 
portion of the airborne part of the takeoff distance to be flown over a clearway.  (See paragraph 
13c(3) for a definition of clearway.)  The takeoff run is the portion of the takeoff distance that 
must take place on or over the runway in accordance with the applicable operating rules.  If there 
is no clearway, the takeoff run is equal to the takeoff distance.  If there is a clearway, the takeoff 
run is the longer described in (a) or (b) below.  These distances are measured as described in 
paragraph 13a(1) for § 25.113(a).  When using a clearway to determine the takeoff run, no more 
than one half of the air distance from VLOF to V35 may be flown over the clearway. 
 

(a) The takeoff runway is the distance from the start of the takeoff roll to the mid-
point between liftoff and the point at which the airplane attains a height of 35 ft. above the 
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takeoff surface, with a critical engine failure occurring at VEF, as shown in Figure 13-4.  For 
takeoff on a wet runway, the takeoff run is equal to the takeoff distance (i.e., there is no clearway 
credit allowed on a wet runway).        
 

Figure 13-4.  Takeoff Run 
 

Critical Engine Fails at VEF 
 

 
 
 

(b)   The all-engines-operating takeoff run is 115% of the distance from the start of 
the takeoff roll to the mid-point between liftoff and the point at which the airplane attains a 
height of 35 ft. above the takeoff surface, with all engines operating, as shown in Figure 13-5.  In 
establishing the all-engines-operating takeoff run, § 25.113(c)(2) requires the distance to be 
“...determined by a procedure consistent with § 25.111” (Takeoff Path).  The interpretation of 
that statement is that the all-engines-operating takeoff run should: 
 

1   Be based on the airplane reaching a speed of V2 before it is 35 feet above 
the takeoff surface; and 

 
2   Be consistent with the achievement of a smooth transition to the steady 

initial climb speed at a height of 400 feet above the takeoff surface. 
Figure 13-5.  Takeoff Run 

 
(All-Engines-Operating) 

 
 

(2)   There may be situations where the takeoff run may be longer for the one-engine-
inoperative condition (paragraph 13c(1)(a)) while the takeoff distance is longer for the all-
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engines-operating condition (paragraph 13c(1)(b)), or vice versa.  Therefore, both conditions 
should always be considered. 

 
(3)   Clearway is defined in 14 CFR part 1 as a plane extending from the end of the 

runway with an upward slope not exceeding 1.25 percent, above which no object nor any terrain 
protrudes.  For the purpose of establishing takeoff distances and the length of takeoff runs, the 
clearway is considered to be part of the takeoff surface extending with the same slope as the 
runway, and the 35 ft. height should be measured from that surface. 
 

Figure 13-6.  Clearway Profiles 
 

35'

35'

CLEARWAY PLANE
0.0% MINIMUM

CLEARWAY PLANE

TAKEOFF PATH

CLEARWAY

CLEARWAY

1.25% MAX.

TAKEOFF PATH

 
14. Takeoff Flight Path - § 25.115. 
 

a.   Takeoff Flight Path - § 25.115(a). 
 
  (1)   Explanation.  The takeoff flight path begins at the end of the takeoff distance and at 
a height of 35 ft. above the takeoff surface.  The takeoff flight path ends when the airplane’s 
actual height is the higher of 1,500 ft. above the takeoff surface or at an altitude at which the en 
route configuration and final takeoff speed have been achieved.  (See paragraph 12 of this AC 
for additional discussion.)  Section 25.115(a) states that the takeoff  “shall be considered to 
begin 35 feet above the takeoff surface,” recognizing that in the case of a wet runway the 
airplane’s actual height will only be 15 feet.  This wording allows the same takeoff flight path 
determined under § 25.115 for a dry runway takeoff to also be used for a wet runway takeoff.  
For takeoffs from wet runways, the actual airplane height will be 20 feet lower than the takeoff 
flight path determined under § 25.115 for takeoff from a dry runway.  Therefore, the airplane 
will be 20 feet closer vertically to obstacles after taking off from a wet runway compared to 
taking off from a dry runway. 
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(2) Procedures. 

 
Figure 14-1.  Takeoff Segments & Nomenclature 

 
 

SEGMENT* •

ACTUAL HEIGHT
≥ 1500 FEET
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≥ 400 FEET

1500 FEET
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GEAR RETRACTION
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•

EFV

• ••

••

•
•

•

TAKEOFF FLIGHT
PATH

TAKEOFF DISTANCE (LONGER
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1.15 ALL ENG TAKEOFF)

35 FT

PATH 2

PATH 1

EN ROUTE
POSITION

GROUND ROLL 1ST 2ND ACCELERATION FINAL

DOWN RETRACTION RETRACTED

TAKEOFF RETRACTING (SEE NOTE)

TAKEOFF ABOVE 400 FT THRUST CAN BE REDUCED IF THE REQUIREMENTS
OF 25.111(C)(3) CAN BE MET WITH LESS THAN TAKEOFF THRUST (SEE NOTE)

ACCELERATING V2 ACCELERATING VFTO

ALL OPERATING ONE INOPERATIVE

TAKEOFF ONE AUTOFEATHERED OR WINDMILLING ONE FEATHERED

UP TO 400 FEET 400 FEET OR GREATER

LANDING GEAR

FLAPS

THRUST/POWER

AIRSPEED

ENGINES

PROPELLER

MAXIMUM
CONTINUOUS

 
 

NOTE 1: The final takeoff segment will usually begin with the airplane in the en 
route configuration and with maximum continuous power or thrust, but it is not 
required that these conditions exist until the end of the takeoff path when 
compliance with § 25.121(c) is shown.  The time limit on takeoff power or thrust 
cannot be exceeded. 

 
NOTE 2: Path 1 depicts a flight path based on a minimum 400 foot level-off for 
acceleration and flap retraction following the second segment climb portion of the 
flight path.  Path 2 depicts the upper limit of the takeoff flight path following an 
extended second segment.  Depending on obstacle clearance needs, the second 
segment may be extended to a height of more than 1500 feet above the takeoff 
surface. 
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b.  Net Takeoff Flight Path - § 25.115(b) and (c). 

 
(1)   Explanation. 

 
(a) The net takeoff flight path is the actual flight path diminished by a gradient of 

0.8 percent for two-engine airplanes, 0.9 percent for three-engine airplanes, and 1.0 percent for 
four-engine airplanes. 

 
(b)   For the level flight acceleration segment, these prescribed gradient reductions 

may be applied as an equivalent reduction in acceleration in lieu of reduction in net flight path.  
(See paragraph 12 f. of this AC for additional discussion.) 

 
 (2) Procedures. 

 
Figure 14-2.  Net Takeoff Flight Path 

 
 
15. Climb:  General - § 25.117. 
 
 a.   Explanation.  This section states the climb requirements of §§ 25.119 and 25.121 must 
be complied with at each weight, altitude, and ambient temperature within the operational limits 
established for the airplane and with the most unfavorable c.g. for each configuration.  The 
effects of changes in the airplane’s true airspeed during a climb at the recommended constant 
indicated (or calibrated) climb speed should be taken into account when showing compliance 
with these climb requirements. 
 

b.   Procedures.  None. 
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16. Landing Climb:  All-Engines-Operating - § 25.119. 
 

a.   Explanation.  Section 25.119(a) states that the engines are to be set at the power or 
thrust that is available 8 seconds after starting to move the power or thrust controls from the 
minimum flight idle position to the go-around power or thrust setting.  Use the procedures given 
below for the determination of this maximum power or thrust for showing compliance with the 
climb requirements of § 25.119. 
 

b.   Procedures. 
 

(1) The engines should be trimmed to the low side of the idle trim band, if applicable, 
as defined in the airplane maintenance manual.  The effect of any variation in the idle fuel flow 
schedule for engines with electronic fuel controllers is typically negligible (but any such claim 
should be adequately substantiated). 

 
(2)   At the most adverse test altitude, not to exceed the maximum field elevation for 

which certification is sought plus 1,500 ft., and with the most adverse bleed configuration 
expected in normal operations, stabilize the airplane in level flight with symmetrical power or 
thrust on all engines, landing gear down, flaps in the landing position, at a speed of VREF.  Retard 
the throttle(s) of the test engine(s) to flight idle and determine the time needed to reach a 
stabilized r.p.m., as defined below, for the test engine(s) while maintaining level flight or the 
minimum rate of descent obtainable with the power or thrust of the remaining engine(s) not 
greater than maximum continuous thrust (MCT).  Engine flight idle r.p.m. is considered to be 
stabilized when the initial rapid deceleration of all rotors is completed.  This has usually been 8-
20 seconds.  This can be determined in the cockpit as the point where rapid movement of the 
tachometer ceases.  For some airplanes it may be desirable to determine the deceleration time 
from plots of r.p.m. versus time. 

 
(3) For the critical air bleed and power extraction configuration, stabilize the airplane 

in level flight with symmetric power or thrust on all engines, landing gear down, flaps in the 
landing position, at a speed of VREF, simulating the estimated minimum climb-limited landing 
weights at an altitude sufficiently above the selected test altitude so that time to descend to the 
test altitude with the throttles closed equals the appropriate engine r.p.m. stabilization time 
determined in paragraph (2) above.  Retard the throttles to the flight idle position and descend at 
VREF to approximately the test altitude.  When the appropriate time has elapsed, rapidly advance 
the power or thrust controls to the go-around power or thrust setting.  The power or thrust 
controls may first be advanced to the forward stop and then retarded to the go-around power or 
thrust setting.  At the applicant’s option, additional less critical bleed configurations may be 
tested. 

 
(4)   The power or thrust that is available 8 seconds after starting to move the power or 

thrust controls from the minimum flight idle position, in accordance with paragraph (3) above, is 
the maximum permitted for showing compliance with the landing climb requirements of 
§ 25.119(a), and Section 4T.119(a) of SR-422B (see Appendix 4) for each of the bleed and 
power extraction combinations tested in accordance with paragraph (3) above.  Unless AFM 
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performance data are presented for each specific bleed and power extraction level, the AFM 
performance data should be based on the power or thrust obtained with the most critical power 
extraction level. 

 
(5)   For airplanes equipped with autothrottles that will be used for approach and go-

around, the effect of using the autothrottle to set go-around power or thrust should be 
determined.  One way to do this would be to complete the test procedure given in paragraph 
16b(3), except that the airplane should be stabilized on -3 degree approach path, nominal power 
extraction, at the weight that gives the lowest power or thrust for that condition.  The autothrottle 
should then be used to increase the power or thrust to the go-around power or thrust setting.  The 
power or thrust used to show compliance with § 25.119(a) should be the lesser of: 

 
(a) The power or thrust that is available 8 seconds after selection of go-around 

power or thrust using the autothrottle; or 
 

(b) The power or thrust determined under paragraph 16b(4).  
 
17. Climb:  One-Engine-Inoperative - § 25.121. 
 
 a. Explanation.  Section 25.121 contains one-engine-inoperative climb gradient capability 
requirements for the first, second, and final takeoff segments as well as for approach. 
 

b. Procedures. 
 

(1)   Two methods for establishing one-engine-inoperative climb performance follow: 
 

(a) Reciprocal heading climbs are conducted at several thrust-to-weight 
conditions from which the performance for the AFM is extracted.  These climbs are flown with 
the wings nominally level.  Control forces should be trimmed out as much as possible, except for 
the takeoff climbs with gear extended where the takeoff trim settings are to be retained to 
represent an operationally realistic drag level.  Reciprocal climbs may not be necessary if inertial 
corrections (or another equivalent means) are applied to account for wind gradients. 

 
(b)   Drag polars and one-engine-inoperative yaw drag data are obtained for 

expansion into AFM climb performance.  These data are obtained with the wings nominally 
level.  Reciprocal heading check climbs are conducted to verify the predicted climb performance.  
These check climbs may be flown with the wings maintained in a near level attitude.  Reciprocal 
climbs may not be necessary if inertial corrections (or another equivalent means) are applied to 
account for wind gradients. 
 

(2)   If full rudder with wings level cannot maintain constant heading, small bank angles 
of up to 2 to 3 degrees into the operating engine(s), with full rudder, should be used to maintain 
constant heading.  Unless the landing lights automatically retract with engine failure, testing 
should be conducted with the lights extended for § 25.121(a) Takeoff; landing gear extended, 
§ 25.121(b) Takeoff; landing gear retracted, and § 25.121(d) Approach. 
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(3)   The climb performance tests with landing gear extended, in accordance with 
§ 25.121(a), may be conducted with the landing gear and gear doors in a stable fully extended 
position.  However, the critical configuration for the landing gear extended climb is considered 
to be that which presents the largest frontal area to the local airflow.  This would normally be 
with no weight on the landing gear (full strut extension and trucks tilted) and all gear doors open.  
Since the takeoff path will be determined either from continuous takeoffs, or checked by 
continuous takeoffs if constructed by the segmental method (Ref.  § 25.111(d)), any non-
conservatism arising from the gear doors “closed” climb data will be evident and should be 
corrected for.  Also, some measure of conservatism is added to the landing gear extended climb 
performance by the requirement of § 25.111(d)(3) for the takeoff path data to be based on the 
airplane’s performance without ground effect.  While during an actual takeoff the airplane may 
accelerate from VLOF towards V2, the climb gradient for showing compliance with § 25.121(a) is 
based on the VLOF speed as specified in the rule. 

 
(4)   If means, such as variable intake doors, are provided to control powerplant cooling 

air supply during takeoff, climb, and en route flight, they should be set in a position that will 
maintain the temperature of major powerplant components, engine fluids, etc., within the 
established limits.  The effect of these procedures should be included in the climb performance 
of the airplane.  These provisions apply for all ambient temperatures up to the highest 
operational temperature limit for which approval is desired.  (Reference:  § 25.1043) 

 
(5)   The latter parts of § 25.121(a)(1) and (b)(1), which state “...unless there is a more 

critical power operating condition existing later along the flight path...” are intended to cover 
those cases similar to where a wet engine depletes its water and reverts to dry engine operation.  
This is not intended to cover normal altitude power or thrust lapse rates above the point where 
retraction of the landing gear is begun.   

 
(6)   Section 25.121(d) requires that the reference stall speed for the approach 

configuration not exceed 110 percent of the reference stall speed for the related landing 
configuration.  This stall speed ratio requirement is to ensure that an adequate margin above the 
stall speed in the selected approach configuration is maintained during flap retraction in a go-
around.  An alternative means of providing an adequate operating speed margin during flap 
retraction in a go-around would be to increase VREF for the landing configuration to provide an 
equivalent operating speed margin.  That is, VREF could be increased such that the reference stall 

speed for the approach configuration does not exceed 110 percent of 23.1
REFV .  An equivalent 

level of safety finding should be used to document the use of this alternative versus direct 
compliance with § 25.121(d).  To maintain equivalent safety, the increase in VREF should not be 
excessive (for example, greater than 5 knots) to minimize the effect on safety of longer landing 
distances, higher brake energy demands, and reduced margins between VREF and VFE.  

 
(7) Section 25.121(d) permits the use of a climb speed established in connection with 

normal landing procedures, but not more than 1.4 VSR.  Section 25.101(g) requires that the 
procedures for the execution of missed approaches associated with the conditions prescribed in 
§ 25.121(d) must be established.  Consequently, the speeds and flap configuration used to show 
compliance with the minimum climb gradient requirements of § 25.121(d) need to be consistent 
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with the speeds and flap configurations specified for go-around in the AFM operating 
procedures.  In order to demonstrate the acceptability of recommended procedures, the applicant 
should conduct go-around demonstrations to include a weight, altitude, temperature (WAT)-
limited or simulated WAT-limited thrust condition.  In accordance with § 25.101(h), the 
established procedures must- 
 

(a) Be able to be consistently executed in service by crews of average skill,  
 

(b) Use methods or devices that are safe and reliable, and 
 

(c) Include allowance for any time delays in the execution of the procedures that 
may reasonably be expected in service.  

 
(8)   FAA policy, as explained in policy memo PS-ANM100-1995-00058, “Go-Around 

Power/Thrust Settings on Transport Category Airplanes, “ dated August 15, 1995, states that 
there should only be one power/thrust setting procedure used to show compliance with both 
§§ 25.119 and 25.121(d). 

 
(a) This policy is based on crew workload issues as discussed in the preamble for 

the Automatic Takeoff Thrust Control System (ATTCS) final rule (Amendment 25-62):  
 

(b) That preamble states, “. . . current regulations preclude a higher thrust for 
approach climb (§ 25.121(d)) than for landing climb (§ 25.119).  The workload required for the 
flightcrew to monitor and select from multiple inflight thrust settings in the event of an engine 
failure during a critical point in the approach, landing, or go-around operation is excessive.”  
 

(c) If the approach climb power/thrust setting is higher than the landing climb 
power/thrust setting, a throttle push would be required to obtain the AFM performance in the 
event of an engine failure after an all-engines-operating go-around has been initiated.  The FAA 
considers the need to manually reset the engine power/thrust setting in a high workload 
environment to be unacceptable.  

 
(d) Systems that automatically reset power/thrust to a higher value after an engine 

failure (example, Automatic Takeoff Thrust Control Systems used for go-arounds) have been 
found acceptable as long as there is a single go-around power/thrust setting procedure for the 
one-engine-inoperative (approach climb) and all-engines-operating (landing climb) conditions.  
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18. En Route Flight Paths - § 25.123. 
 

a.   Explanation.  This guidance is intended for showing compliance with the requirements 
of § 25.123. 
 

b.   Procedures. 
 

(1) Sufficient en route climb performance data should be presented in the AFM to 
permit the determination of the net climb gradient and the net flight path in accordance with 
§ 25.123(b) and (c) for all gross weights, altitudes, and ambient temperatures within the 
operating limits of the airplane.  This en route climb performance data should be presented for 
altitudes up to the all-engines-operating ceiling to permit the calculation of drift-down data in the 
event of an en route engine failure. 

 
(2)   Fuel Consumption Accountability.  The effect of the variation of the airplane’s 

weight along the flight path due to the progressive consumption of fuel may be taken into 
account using fuel flow rates obtained from airplane manufacturers’ test data.  If measured fuel 
flow data is unavailable, a conservative fuel flow rate not greater than 80 percent of the engine 
specification flow rate at maximum continuous thrust (MCT) may be used. 

 
(3)   The procedures and flight conditions upon which the en route flight path data are 

based should be provided to the flightcrew.  Credit for fuel dumping, if available and included in 
the flightcrew procedures, may be used to achieve the performance capability presented in the 
AFM.  A conservative analysis should be used in taking into account the ambient conditions of 
temperature and wind existing along the flight path.  All performance should be based on the net 
flight path and with MCT on the operating engine(s). 
 
19. Landing - § 25.125. 
 

a.   Explanation. 
 

(1)   The landing distance is the horizontal distance from the point at which the main 
gear of the airplane is 50 ft. above the landing surface (treated as a horizontal plane through the 
touchdown point) to the position of the nose gear when the airplane is brought to a stop.  (For 
water landings, a speed of approximately 3 knots is considered “stopped.”)  The beginning of the 
landing distance is referenced to the main gear because it is the lowest point of the airplane when 
the airplane is 50 feet above the landing surface.  The end of the landing distance is referenced to 
the nose gear because it is the most forward part of the airplane in contact with the landing 
surface, and it should not extend beyond the certified landing distance.  In this AC, the landing 
distance is divided into two parts:  the airborne distance from 50 ft. to touchdown, and the 
ground distance from touchdown to stop.  The latter may be further subdivided into a transition 
phase and a full braking phase if the applicant prefers this method of analysis. 

 
(2)   The minimum allowable value of VREF is specified in § 25.125(a)(2)(i) and (ii).  It 

is intended to provide an adequate margin above the stall speed to allow for likely speed 
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variations during an approach in light turbulence and to provide adequate maneuvering 
capability.  If the landing demonstrations show that a higher speed is needed for acceptable 
airplane handling characteristics, the landing distance data presented in the AFM must be based 
upon the higher reference landing speed per § 25.125(b)(2).  Furthermore, if procedures 
recommend the use of approach speeds that are higher than VREF for reasons other than wind, 
flight tests should be conducted to determine whether the recommended VREF  speeds are readily 
achievable at the landing threshold.  If VREF is not readily achievable, then the AFM landing 
distances must include the effect of the excess speed at the landing threshold. 

 
(3)   The engines should be set to the high side of the flight idle trim band, if applicable, 

for the landing flight tests.  The effect of any variation in the idle fuel flow schedule for engines 
with electronic fuel controllers is typically negligible (but any such claim should be adequately 
substantiated). 
 

b.   Procedures for Determination of the Airborne Distance.  Three acceptable means of 
compliance are described in paragraphs (1), (2), and (3) below.   
 

NOTE: If it is determined that the constraints on approach angle and touchdown 
rate-of-sink described in paragraphs (2) and (3), below, are not appropriate due to 
novel or unusual features of the airplane’s design, new criteria may be 
established.  Such a change would be acceptable only if it is determined that an 
equivalent level of safety to existing performance standards and operational 
procedures is maintained. 

 
(1) Experience shows an upper bound to the part 25 zero-wind airborne distances 

achieved in past certifications and, similarly, a minimum speed loss.  These are approximated by 
the following: 
 
  Air Distance (feet)   =  1.55 (VREF-80)1.35+800     where VREF is in knots TAS 
 
  Touchdown Speed   =  VREF-3 knots 
 

An applicant may choose to use these relationships to establish landing distance in lieu 
of measuring airborne distance and speed loss.  If an applicant chooses to use these relationships, 
the applicant should show by test or analysis that they do not result in air distances or touchdown 
speeds that are nonconservative. 
 
  (2) If an applicant chooses to measure airborne distance or time, at least six tests 
covering the landing weight range are required for each airplane configuration for which 
certification is desired.  These tests should meet the following criteria: 
 
   (a) A stabilized approach, targeting a glideslope of -3 degrees and an indicated 
airspeed of VREF, should be maintained for a sufficient time prior to reaching a height of 50 feet 
above the landing surface to simulate a continuous approach at this speed.  During this time, 
there should be no appreciable change in the power or thrust setting, pitch attitude, or rate of 
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descent.  The average glideslope of all landings used to show compliance should not be steeper 
than -3 degrees. 
 
   (b)   Below 50 feet, there should be no nose depression by use of the longitudinal 
control and no change in configuration that requires action by the pilot, except for reduction in 
power or thrust. 
 
   (c)   The target rate of descent at touchdown should not exceed 6 feet per second.  
Although target values may not be precisely achieved, the average touchdown rate of descent 
should not exceed 6 feet per second. 
 
  (3) If the applicant conducts enough tests to allow a parametric analysis (or equivalent 
method) that establishes, with sufficient confidence, the relationship between airborne distance 
(or time) as a function of the rates of descent at 50 feet and touchdown, the part 25 airborne 
distances may be based on an approach angle of -3.5 degrees, and a touchdown sink rate of 8 feet 
per second (See paragraph 19h for an example of this analysis method).  The parametric analysis 
method with these approach angle and touchdown sink rate values should only be used for 
landing distances for which the operational safety margins required by § 121.195(b) or (c), 
§ 135.385(b), (c), or (f), or equivalent will be applied.  
 
   (a) At a given weight, the air distance or air time established by this method 
should not be less than 90 percent of the lowest demonstrated value obtained using the target 
values for approach angle and touchdown sink rate specified in paragraph (b), below.  Test data 
with approach angles steeper than -3.5 degrees, or touchdown sink rates greater than 8 feet per 
second, should not be used to satisfy this requirement. 
 
   (b) In order to determine the parametric relationships, it is recommended that test 
targets span approach angles from -2.5 degrees to –3.5 degrees, and sink rates at touchdown 
from 2-6 ft. per second.  Target speed for all tests should be VREF. 
 
   (c)   Below 50 feet, there should be no nose depression by use of the longitudinal 
control and no change in configuration that requires action by the pilot, except for reduction in 
power or thrust. 
 
   (d)   If an acceptable method of analysis is developed by the applicant, a sufficient 
number of tests should be conducted in each aerodynamic configuration for which certification is 
desired to establish a satisfactory confidence level for the resulting air distance.  Autolands may 
be included in the analysis but should not comprise more than half of the data points.  If it is 
apparent that configuration is not a significant variable, all data may be included in a single 
parametric analysis. 
 
   (e)   If an applicant proposes any other method as being equivalent to a parametric 
analysis, that method should be based on a developed mathematical model that employs 
performance-related variables such as power or thrust, attitude, angle-of-attack, and load factor 
to adequately reproduce the flight test trajectory and airspeed variation from the 50 foot point to 
touchdown.  Such a mathematical model should be validated by a sufficient number of tests to 
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establish a satisfactory confidence level, and be justified by a comparison of tested and 
calculated landing airborne distances. 
 
   (f)   For a derivative airplane with an aerodynamic configuration that has been 
previously certificated -- if new tests are necessary to substantiate performance to a weight 
higher than that permitted by the extrapolation limits of § 25.21(d), two landings per 
configuration should be conducted for each 5 percent increase in landing weight (but no more 
than a total of six landings should be needed).  These may be merged with previous certification 
tests for parametric analysis, regardless of whether the previous certification was conducted by 
this method or not.  If a new aerodynamic configuration is proposed, the guidance described in 
paragraph (d), above, should be used. 
 
   (g)   In calculating the AFM landing distances, the speed loss from 50 feet to 
touchdown, as a percentage of VREF, may be determined using the conditions described in 
paragraph 19b(3). 
 
  (4)   Whichever method is chosen to establish airborne distances, satisfactory flight 
characteristics should be demonstrated in the flare maneuver when a final approach speed of 
VREF-5 knots is maintained down to 50 feet. 
 
   (a)   Below 50 feet, the application of longitudinal control to initiate flare should 
occur at the same altitude as for a normal “on-speed” landing; no nose depression should be 
made and power or thrust should not be increased to facilitate the flare. 
 
   (b)   All power/thrust levers should be in their minimum flight idle position prior to 
touchdown. 
 
   (c)   The normal flare technique should be used, resulting in a touchdown speed 
approximately 5 knots less than the touchdown speed used to establish the landing distance.  The 
rate of descent at touchdown should not be greater than 6 feet per second. 
 
   (d)   This demonstration should be performed over a range of weights (typically at 
maximum landing weight and near minimum landing weight), or at the most critical weight and 
c.g. combination as established by analysis or other acceptable means. 
 
   (e)   These VREF-5 knots landing demonstrations should not require the use of high 
control forces or full control deflections. 
 
 c. Procedures for Determination of the Transition and Stopping Distances. 
 
  (1)   The transition distance extends from the initial touchdown point to the point where 
all approved deceleration devices are operating.  The stopping distance extends from the end of 
transition to the point where the airplane is stopped.  The two phases may be combined at the 
applicant’s option. 
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  (2)   If sufficient data are not available, there should be a minimum of six landings in the 
primary landing configuration.  Experience has shown that if sufficient data are available for the 
airplane model to account for variation of braking performance with weight, lift, drag, ground 
speed, torque limit, etc., at least two test runs are necessary for each configuration when 
correlation for multiple configurations is being shown. 
 
  (3)   A series of at least six measured landing tests covering the landing weight range 
should be conducted on the same set of wheels, tires, and brakes in order to substantiate that 
excessive wear of wheel brakes and tires is not produced in accordance with the provisions of 
§ 25.125(c)(2).  The landing tests should be conducted with the normal operating brake pressures 
for which the applicant desires approval.  The brakes may be in any wear state as long as an 
acceptable means is used to determine the landing distances with fully worn brakes for 
presentation in the AFM.  The main gear tire pressure should be set to not less than the 
maximum pressure desired for certification corresponding to the specific test weight.  
Longitudinal control and brake application procedures should be such that they can be 
consistently applied in a manner that permits the airplane to be de-rotated at a controlled rate to 
preclude an excessive nose gear touchdown rate and so that the requirements of § 25.125(b)(4) 
and (5) are met.  Nose gear touchdown rates in the certification landing tests should not be 
greater than eight feet per second.  Certification practice has not allowed manually applied 
brakes before all main gear wheels are firmly on the ground.  An automatic braking system can 
be armed before touchdown. 
 
  (4)   Describe the airplane operating procedures appropriate for determination of landing 
distance in the performance section of the AFM. 
 
  (5)   Propeller pitch position used in determining the normal all-engines-operating 
landing stopping distance should be established using the criteria of § 25.125(g) for those 
airplanes that may derive some deceleration benefit from operating engines.  Section 25.125(g) 
states that if the landing distance determined using a “device” that depends on the operation of 
any engine would be “noticeably increased” when a landing is made with that engine 
inoperative, the landing distance must be determined with that engine inoperative, unless a 
“compensating means” will result in one-engine-inoperative landing distances not greater than 
those with all engines operating.  Acceptable interpretations of the terms “device,” “noticeably 
increased,” and “compensating means” are described below. 
 
   (a) If, with the normal operational ground idle setting procedure, the propeller 
produces drag at any speed during the stopping phase of the normal all-engines-operating 
landing distance, the maximum drag from this “device” for which performance credit may be 
taken is that which results from a propeller pitch position that gives not more than a slight 
negative thrust at zero airspeed.  A slight negative thrust is that which will not cause the airplane, 
at light weight and without brakes being applied, to roll on a level surface.  If the normal 
operational ground idle setting produces greater negative thrust at zero airspeed, the all-engines-
operating stopping distances should be determined using a special flight test power lever stop to 
limit the propeller blade angle. 
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   (b)   Distances should be measured for landings made with the propeller feathered 
on one engine, and ground idle selected after touchdown on the operating engines.  The airplane 
configuration for this test, including the ground idle power lever position, should be the same as 
that used for the all-engines-operating landing distance determination.  Differential braking may 
be used to maintain directional control.  This testing should be conducted at the critical 
weight/c.g. position and landing speed.  The propeller/engine rigging should be at the most 
adverse allowable tolerance.  If the resulting distance does not exceed the all-engines-operating 
landing distance by more than two percent (2 percent), it is not “noticeably increased” and no 
further testing is required to take performance credit for all-engines-operating ground idle drag 
in the certified landing distances. 
 
   (c)  If the distances determined in paragraph (b), above, are more than two percent 
greater than the all-engines-operating landing distances, there should be a “compensating means” 
in order to take performance credit for the all-engines-operating ground idle drag.  Reverse 
propeller thrust on the operating engines is considered a “compensating means” if the resulting 
landing distances, with one propeller feathered, are demonstrated to be not longer than those 
determined for all-engines-operating with the ground idle setting.  The airplane configuration for 
this test should be the same as that used for the all-engines-operating landing distance 
determination, except that the propeller reverse thrust position is used.  The nose wheel should 
be free to caster, as in VMCG tests, to simulate wet runway surface conditions.  Differential 
braking may be used to maintain directional control.  Procedures for using propeller reverse 
thrust during the landing must be developed and demonstrated.  The procedures associated with 
the use of propeller reverse thrust, required by § 25.101(f), must meet the requirements of 
§ 25.101(h).  The criteria outlined below may be applied to derive the levels of propeller reverse 
thrust consistent with recommended landing procedures and provide an acceptable means of 
demonstrating compliance with these requirements.  This testing should be conducted at the 
critical weight/c.g. position and landing speed.  The propeller/engine rigging should be at the 
most adverse allowable tolerance.  If the "compensating means" do not allow performance credit 
for the all-engines-operating ground idle drag, a minimum of three weights that cover the 
expected range of operational landing weights and speeds should be tested. 
 

1   In accordance with § 25.101(f), procedures for using propeller reverse 
thrust during landing must be developed and demonstrated.  These procedures should include all 
of the pilot actions necessary to obtain the recommended level of propeller reverse thrust, 
maintain directional control, ensure safe engine operating characteristics and cancel propeller 
reverse thrust.  
 

2   It should be demonstrated that using propeller reverse thrust during a 
landing complies with the engine operating characteristics requirements of § 25.939.  The 
propeller reverse thrust procedures may specify a speed at which the propeller reverse thrust is 
cancelled in order to maintain safe engine operating characteristics.  
 

3   The time sequence for the actions necessary to obtain the recommended 
level of propeller reverse thrust should be demonstrated by flight test.  The time sequence used 
to determine the landing distances should reflect the most critical case relative to the time needed 
to obtain selected propeller reverse thrust.  
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4   The response times of the affected airplane systems to pilot inputs should 

be taken into account, for example, delays in system operation, such as interlocks and power 
lever detents that prevent the pilot from immediately selecting propeller reverse thrust.  The 
effects of transient response characteristics, such as propeller reverse thrust engine spin-up, 
should also be included.  
 

5   To enable a pilot of average skill to consistently obtain the recommended 
level of propeller reverse thrust under typical in-service conditions, a lever position that 
incorporates tactile feedback (e.g., a detent or stop) should be provided.  If tactile feedback is not 
provided, a conservative level of propeller reverse thrust should be assumed.  
 

6   The applicant should demonstrate that exceptional skill is not required to 
maintain directional control on a wet runway.  The propeller reverse thrust procedures may 
specify a speed at which the propeller reverse thrust is cancelled in order to maintain directional 
controllability.  
 

7   Compliance with the requirements of §§ 25.901(b)(2), 25.901(c), 
25.1309(b), and 25.1309(c) will be accepted as providing compliance with the “safe and 
reliable” requirements of §§ 25.101(h)(2) and 25.125(c)(3).  
 
 d Instrumentation and Data.  Instrumentation should include a means to record the 
airplane’s glide path relative to the ground, and the ground roll against time, in a manner that 
permits determining the horizontal and vertical distance time-histories.  The appropriate data to 
permit analysis of these time-histories should also be recorded. 
 
 e. Landing on Unpaved Runways.  Guidance material for evaluation of landing on 
unpaved runways is contained in Chapter 8 of this AC. 
 
 f. Automatic Braking Systems.  Guidance material relative to evaluation of auto-brake 
systems is provided in paragraph 55c(6) of this AC. 
 
 g. AFM Landing Distances. 
 
  (1) In accordance with § 25.101(i), AFM landing distances must be determined with all 
the airplane wheel brake assemblies at the fully worn limit of their allowable wear range.  The 
brakes may be in any wear state during the flight tests used to determine the landing distances, as 
long as a suitable combination of airplane and dynamometer tests is used to determine the 
landing distances corresponding to fully worn brakes.  Alternatively, the relationship between 
brake wear and stopping performance established during accelerate-stop testing may be used if it 
encompasses the brake wear conditions and energies achieved during the airplane flight tests 
used to establish the landing distances. 
 
  (2)   In deriving the scheduled distances, the time delays shown below should be 
assumed. 
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 Figure 19-1.  Landing Time Delays 
 

 
 

   (a)  This segment represents the flight test measured average time from 
touchdown to pilot activation of the first deceleration device.  For AFM data expansion, use the 
longer of 1 second or the test time. 
 

   (b)  This segment represents the flight test measured average test time from 
pilot activation of the first deceleration device to pilot activation of the second deceleration 
device.  For AFM data expansion, use the longer of 1 second or the test time. 
 

   (c) Step  is repeated until pilot activation of all deceleration devices has been 
completed and the airplane is in the full braking configuration. 
 
  (3) For approved automatic deceleration devices (e.g., autobrakes or auto-spoilers, 
etc.) for which performance credit is sought for AFM data expansion, established times 
determined during certification testing may be used without the application of the 1-second 
minimum time delay required in the appropriate segment above. 
 
  (4) It has been considered acceptable to expand the airborne portion of the landing 
distance in terms of a fixed airborne time, independent of airplane weight or approach speed. 
 
  (5) Assumptions to be made in assessing the effect of wind on landing distance are 
discussed in paragraph 3 of this AC. 
 
 h. Parametric Analysis Data Reduction.  The following is an acceptable method of 
converting the test data to a mathematical model for the parametric analysis method of air 
distance described in paragraph 19b(3). 
 
Test Data for Each Test Point: 
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 R/S50 = Rate of sink at 50 ft. above landing surface, ft/sec 
 R/STD = Rate of sink at touchdown, ft/sec 
 V50  = True airspeed at 50 ft. above landing surface, ft/sec 
 VTD = True airspeed at touchdown, ft/sec 
 t  = Air time 50 ft. to touchdown, sec 
 
The multiple linear regression analysis as outlined below is used to solve for the constants in the 
following equation: 
 
 50/t  = a + b(R/S50) + (c)(R/STD) 
 
The form of the dependent variable being solved in the above equation is 50/t, rather than just t, 
in order to maintain the same units for all variables. 
 
The test values of all the test points, 1 through n, are used to determine the constants a, b, and c 
in the above equation as follows, where n equals the number of test points and R1 through R13 
are the regression coefficients: 
 
 R1 = R/S50 1

n

 R2 = (R/S50)
2 1

n

 R3 =  R/STD 1
n

 R4 =  (R/STD)2 1
n

 R5 =  (R/S50)(R/STD) 1
n

 R6 =  (50/t) 1
n

 R7 =  (R/S50)(50/t) 1
n

 R8 =  (R/STD)(50/t) 1
n

 R9  = (n)(R2)-(R1)2 

 R10 = (n)(R8)-(R3)(R6) 

 R11 = (n)(R5)-(R1)(R3) 

 R12 = (n)(R7)-(R1)(R6) 

 R13 = (n)(R4)-(R3)2 

 c = ((R9)(R10)-(R11)(R12))/((R9)(R13)-(R11)2) 

 b = ((R12)-(c)(R11))/R9 

 a = ((R6)-(b)(R1)-(c)(R3))/n 
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Using the same regression coefficient relationships, determine the values of the constants, a, b, 
and c, for the speed reduction between 50 ft. and touchdown (V50/VTD) by using the value of 
(V50/VTD) for (50/t) for each test point. 
 
After determining the values of the constants, use the above equation for (50/t) to calculate the 
time from 50 ft. to touchdown for the target conditions of a -3.5 degrees flight path angle and 
R/STD = 8 ft/sec.  Use a value of (R/S50) calculated from the approach path and V50.  Then, using 
the same equation, but substituting (V50/VTD) for (50/t) and using the constants determined for 
(V50/VTD), calculate (V50/VTD). 
 
After VTD is determined (from V50/VTD and V50), the air distance may be determined for the 
average flare speed and air time. 
 
Example: 
 
Test Data: 
 
 Run R/S50 R/STD V50 VTD t  
 
 1  13.4  6.1  219 214 5.6 
 2  10.9  1.8  223 218 8.5 
 3  7.9  5.8  209 201 7.4 
 4  8.3  2.3  213 206 9.6 
 5  9.8  4.1  218 212 7.5 
 
Results: 
 
 50/t = 1.0432 + 0.3647(R/S50) + 0.4917(R/STD)  
 
 V50/VTD = 1.05508 - 0.003198(R/S50) + 0.001684(R/STD)  
 
 For conditions of V50 = 220 ft/sec, flight path = -3.5 degrees, R/STD = 8.0 ft/sec, 
 the results are: 
 
 R/S50 = 13.43 ft/sec  V50/VTD = 1.0256 
 t = 5.063 sec.    Air Distance = 1100 ft. 
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Section 3.  Controllability and Maneuverability  

 
20. General - § 25.143.  
  
 a. Explanation.  The purpose of § 25.143 is to verify that any operational maneuvers 
conducted within the operational envelope can be accomplished smoothly with average piloting 
skill and without encountering a stall warning or other characteristics that might interfere with 
normal maneuvering, or without exceeding any airplane structural limits.  Control forces should 
not be so high that the pilot cannot safely maneuver the airplane.  Also, the forces should not be 
so light that it would take exceptional skill to maneuver the airplane without over-stressing it or 
losing control.  The airplane response to any control input should be predictable to the pilot.  
 
  (1) The maximum forces given in the table in § 25.143(d) for pitch and roll control for 
short term application are applicable to maneuvers in which the control force is only needed for a 
short period.  Where the maneuver is such that the pilot will need to use one hand to operate 
other controls (such as during the landing flare or a go-around, or during changes of 
configuration or power/thrust resulting in a change of control force that needs to be trimmed out) 
the single-handed maximum control forces will be applicable.  In other cases (such as takeoff 
rotation, or maneuvering during en route flight), the two-handed maximum forces will apply. 
 
  (2) Short-term and long-term forces should be interpreted as follows: 
 
   (a) Short-term forces are the initial stabilized control forces that result from 
maintaining the intended flight path following configuration changes and normal transitions from 
one flight condition to another, or from regaining control following a failure.  It is assumed that 
the pilot will take immediate action to reduce or eliminate such forces by re-trimming or 
changing configuration or flight conditions, and consequently short-term forces are not 
considered to exist for any significant duration.  They do not include transient force peaks that 
may occur during the configuration change, change of flight conditions, or recovery of control 
following a failure. 
 
   (b) Long-term forces are those control forces that result from normal or failure 
conditions that cannot readily be trimmed out or eliminated. 
 
  (3) In conducting the controllability and maneuverability tests to show compliance 
with § 25.143 at speeds between VMO/MMO and VFC/MFC, the airplane should be trimmed at 
VMO/MMO.  
 
  (4) Modern wing designs can exhibit a significant reduction in maximum lift capability 
with increasing Mach number.  The magnitude of this Mach number effect depends on the 
design characteristics of the particular wing.  For wing designs with a large Mach number effect, 
the maximum bank angle that can be achieved while retaining an acceptable stall margin can be 
significantly reduced.  Because the effect of Mach number can be significant, and because it can 
also vary greatly for different wing designs, the multiplying factors applied to VSR may be 
insufficient to ensure that adequate maneuvering capability exists at the minimum operating 
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speeds.  To address this issue, § 25.143(h) was added by Amendment 25-108 to require a 
minimum bank angle capability in a coordinated turn without encountering stall warning or any 
other characteristic (including the envelope protection features of fly-by-wire flight control 
systems or automatic power or thrust increases) that might interfere with normal maneuvering.  
The maneuvering requirements consist of the minimum bank angle capability the FAA deems 
adequate for the specified regimes of flight combined with additional bank angle capability to 
provide a safety margin for various operational factors.  These operational factors include both 
potential environmental conditions (e.g., turbulence, wind gusts) and an allowance for piloting 
imprecision (e.g., inadvertent overshoots).  The FAA considers the automatic application of 
power or thrust by an envelope protection feature to be a feature that might interfere with normal 
maneuvering because it will result in a speed increase and flight path deviation, as well as 
potentially increasing crew workload due to the unexpected power or thrust increase.  
 
 b. General Test Requirements. 
 
  (1) Compliance with § 25.143 (a) through (g) is primarily a qualitative determination 
by the pilot during the course of the flight test program.  The control forces required and airplane 
response should be evaluated during changes from one flight condition to another and during 
maneuvering flight.  The forces required should be appropriate to the flight condition being 
evaluated.  For example, during an approach for landing, the forces should be light and the 
airplane responsive in order that adjustments in the flight path can be accomplished with a 
minimum of workload.  In cruise flight, forces and airplane response should be such that 
inadvertent control input does not result in exceeding limits or in undesirable maneuvers.  
Longitudinal control forces should be evaluated during accelerated flight to ensure a positive 
stick force with increasing normal acceleration.  Forces should be heavy enough at the limit load 
factor to prevent inadvertent excursions beyond the design limit.  Sudden engine failures should 
be investigated during any flight condition or in any configuration considered critical, if not 
covered by another section of part 25.  Control forces considered excessive should be measured 
to verify compliance with the maximum control force limits specified in § 25.143(d).  Allowance 
should be made for delays in the initiation of recovery action appropriate to the situation.  
 
  (2) Since § 25.143(h) involves a target speed, bank angle, and maximum value of 
thrust/power setting, not all flight test conditions to demonstrate compliance will necessarily 
result in a constant-altitude, thrust-limited turn.  In cases with positive excess power or thrust, a 
climbing condition at the target bank and speed is acceptable.  Alternately, if desired, the power 
or thrust may be reduced to less than the maximum allowed, so that compliance is shown with a 
completely stabilized, constant-altitude turn.  With the airplane stabilized in a coordinated turn, 
holding power or thrust and speed, increase bank angle at constant airspeed until compliance is 
shown.  For cases with negative excess power or thrust (e.g., the landing configuration case), a 
constant-altitude slow-down maneuver at the target bank angle has been shown to be a suitable 
technique.  With the airplane descending at VREF in wings-level flight on a three degree glide 
path, trim and throttle position are noted.  The airplane is then accelerated to VREF + 10 to 20 
knots in level flight.  The original trim and throttle conditions are reset as the airplane is rolled 
into a constant-altitude slow-down turn at the target bank angle.  Throttles can be manipulated 
between idle and the marked position to vary slow-down rate as desired.  Compliance is shown 
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when the airplane decelerates through VREF in the turn without encountering a stall warning or 
other characteristic that might interfere with normal maneuvering. 
 
  (3) If stall warning is provided by an artificial stall warning system, the effect of 
production tolerances on the stall warning system should be considered when evaluating 
compliance with the maneuvering capability requirements of § 25.143(h).  See paragraph 
29f(2)(f) of this AC for more information. 
 
 c. Controllability Following Engine Failure.  Section 25.143(b)(1) requires the airplane to 
be controllable following the sudden failure of the critical engine.  To show compliance with this 
requirement, the demonstrations described in paragraphs (1) and (2), below, should be made with 
engine failure (simulated by fuel cuts) occurring during straight, wings level flight.  To allow for 
likely in-service delays in initiating recovery action, no action should be taken to recover control 
for two seconds following pilot recognition of engine failure.  The recovery action should not 
necessitate movement of the engine, propeller, or trim controls, and should not result in 
excessive control forces.  Additionally, the airplane will be considered to have reached an 
unacceptable attitude if the bank angle exceeds 45 degrees during the recovery.  These tests may 
be conducted using throttle slams to idle, with actual fuel cuts repeated only for those tests found 
to be critical. 
 
  (1) At each takeoff flap setting at the initial all-engine climb speed (e.g., V2 + 10 
knots) with: 
 
   (a) All engines operating at maximum takeoff power or thrust prior to failure of 
the critical engine; 
 
   (b) All propeller controls (if applicable) in the takeoff position; 
 
   (c) The landing gear retracted; and 
 
   (d) The airplane trimmed at the prescribed initial flight condition. 
 
  (2) With the wing flaps retracted at a speed of 1.23 VSR with: 
  
   (a) All engines operating at maximum continuous power or thrust prior to failure 
of the critical engine; 
 
   (b) All propeller controls in the en route position; 
 
   (c) The landing gear retracted; and 
 
   (d) The airplane trimmed at the prescribed initial flight condition. 
 
 d. Pilot Induced Oscillations (PIO). 
 
  (1) Explanation. 
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   (a) Section 25.143(a) and (b) require that the airplane be safely controllable and 
maneuverable without exceptional piloting skill and without danger of exceeding the airplane 
limiting load factor under any probable operating conditions.  Service history events have 
indicated that modern transport category airplanes can be susceptible to airplane-pilot coupling 
under certain operating conditions and would not meet the intent of this requirement. 
 
   (b)  The classic PIO is considered to occur when an airplane’s response is 
approximately 180 degrees out of phase with the pilot’s control input.  However, PIO events 
with 180 degrees phase relationships are not the only conditions in which the airplane may 
exhibit closed-loop (pilot-in-the-loop) characteristics that are unacceptable for operation within 
the normal, operational, or limit flight envelopes.  Others include unpredictability of the 
airplane’s response to the pilot’s control input.  This may be due to nonlinearities in the control 
system, actuator rate or position limiting not sensed by the pilot through the flight controls, or 
changing pitch response at high altitude as the airplane maneuvers into and out of Mach buffet.  
Artificial trim and feel systems which produce controllers with too small a displacement and 
light force gradients may also lead to severe over control.  This is especially true in a dynamic 
environment of high altitude turbulence or upsets in which the autopilot disconnects.  This places 
the airplane in the hands of the unsuspecting pilot in conditions of only a small g or airspeed 
margin to buffet onset and with very low aerodynamic damping.  These characteristics, while not 
a classic 180 out of phase PIO per se, may be hazardous and should be considered under the 
more general description of airplane-pilot coupling tendencies 
 
   (c) Some of the PIO tendency characteristics described in paragraph (b) above are 
attributes of transport airplanes (e.g., low frequency short period, large response lags) that are 
recognized by part 25.  Limits are placed on some of these individual attributes by part 25 (e.g., 
stick force per g, heavily damped short period) to assure satisfactory open-loop characteristics.  
However, service reports from recent years have indicated that certain operating envelope 
conditions, combined with triggering events, can result in airplane-pilot coupling incidents.  
Some of the conditions that have led to these PIOs include fuel management systems that permit 
extended operations with a c.g. at or near the aft limit, operating at weight/speed/altitude 
conditions that result in reduced margins to buffet onset combined with tracking tasks such as 
not exceeding speed limitations and severe buffet due to load factor following an upset, and 
control surface rate or position limiting. 
 
   (d) This service experience has shown that compliance with only the quantitative, 
open-loop (pilot-out-of-the loop) requirements does not guarantee that the required levels of 
flying qualities are achieved.  Therefore, in order to ensure that the airplane has achieved the 
flying qualities required by § 25.143(a) and (b), the airplane should be evaluated by test pilots 
conducting high-gain (wide-bandwidth), closed-loop tasks to determine that the potential of 
encountering adverse PIO tendencies is minimal. 
 
   (e) For the most part, these tasks should be performed in actual flight.  However, 
for conditions that are considered too dangerous to attempt in actual flight (i.e., certain flight 
conditions outside of the operational flight envelope, flight in severe atmospheric disturbances, 
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flight with certain failure states, etc.), the closed loop evaluation tasks may be performed using a 
motion base high fidelity simulator if it can be validated for the flight conditions of interest. 
 
  (2) Special Considerations. 
 
   (a) The certification team should understand the flight control system and airplane 
design. 
 
   (b) The applicant should explain why the design is not conducive to a PIO 
problem and how this is to be shown in both developmental and certification flight tests. 
 
   (c) The applicant should explain what has been done during the development 
flight test experience and any design changes that were required for PIO problems. 
 
   (d) The certification flight test program should be tailored to the specific airplane 
design and to evaluate the airplane in conditions that were found to be critical during its 
development program and PIO analytical assessment. 
 
   (e) The FAA flight test pilots should also continuously evaluate the airplane for 
PIO tendencies during the certification program in both the airplane and simulator.  This 
evaluation should include both normal and malfunction states; all certification flight test points; 
transitions between and recoveries from these flight test points; and normal, crosswind, and 
offset landing task evaluations. 
 
   (f) Since the evaluation of flying qualities under § 25.143(a) and (b) is basically 
qualitative, especially evaluations of PIO susceptibility, the high-gain tasks discussed herein 
should be accomplished by at least three test pilots.  Use of other pilots can provide additional 
insights into the airplane handling qualities, but for the purpose of demonstrating compliance 
with this requirement the evaluation pilots should be trained test pilots. 
 
  (3) Procedures (Flight Test). 
 
   (a) Evaluation of the actual task performance achieved, e.g., flight technical error, 
is not recommended as a measure of proof of compliance.  Only the pilot’s rating of the PIO 
characteristics is needed as described in paragraph 20d(6).  The tasks are used only to increase 
the pilot’s gain, which is a prerequisite for exposing PIO tendencies.  Although task performance 
is not used as proof of compliance, task performance should be recorded and analyzed to insure 
that all pilots seem to be attempting to achieve the same level of performance. 
 
   (b) Tasks for a specific certification project should be based on operational 
situations, flight testing maneuvers, or service difficulties that have produced PIO events.  Task 
requirements for a specific project will be dictated by the particular airplane and its specific 
areas of interest as determined by the tailored flight test program mentioned above.  Some of 
these include high altitude upset maneuvers, encounters with turbulence at high altitude in which 
the autopilot disconnects, crosswind/crossed control landings with and without one engine 
inoperative, and offset landings to simulate the operational case in which the airplane breaks out 
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of instrument meteorological conditions (IMC) offset from the glideslope and/or localizer beam 
and the pilot makes a rapid alignment correction.  Tests should be conducted at or near the 
critical altitude/weight/c.g. combinations. 
 
   (c) Tasks described here may be useful in any given evaluation and have proven 
to be operationally significant in the past.  It is not intended that these are the only tasks that may 
be used or may be required depending on the scope and focus of the individual evaluation being 
conducted.  Other tasks may be developed and used as appropriate.  For example, some 
manufacturers have used formation tracking tasks successfully in the investigation of these 
tendencies.  For all selected tasks, a build-up approach should be used and all end points should 
be approached with caution.  Capture tasks and fine tracking tasks share many common 
characteristics but serve to highlight different aspects of any PIO problem areas that may exist.  
In some cases, depending on individual airplane characteristics, it may be prudent to look at 
capture tasks first and then proceed to fine tracking tasks or combined gross acquisition (capture) 
and fine tracking tasks as appropriate. 
 
  (4) Capture Tasks. 
 
   (a) Capture tasks are intended to evaluate handling qualities for gross acquisition 
as opposed to continuous tracking.  A wide variety of captures can be done provided the 
necessary cues are available to the pilot.  Pitch attitude, bank angle, heading, flight path angle, 
angle-of-attack, and g captures can be done to evaluate different aspects of the airplane response.  
These capture tasks can give the pilot a general impression of the handling qualities of the 
airplane, but because they do not involve closed-loop fine tracking, they do not expose all of the 
problems that may arise in fine tracking tasks.  Capture tasks should not be used as the only 
evaluation tasks. 
 
   (b) For pitch captures, the airplane is trimmed for a specified flight condition.  
The pilot aggressively captures 5 degrees pitch attitude (or 10 degrees if the airplane is already 
trimmed above 5 degrees).  The pilot then makes a series of aggressive pitch captures of 5 degree 
increments in both directions, and then continues this procedure with ten degree increments in 
both directions.  An airplane with more capability can continue the procedure with larger pitch 
excursions.  If possible, the initial conditions for each maneuver should be such that the airplane 
will remain within ± 1,000 feet and ± 10 knots of the specified flight condition during the 
maneuver; however, large angle captures at high-speed conditions will inevitably produce larger 
speed and altitude changes.  If the airplane should get too far from the specified condition during 
a task, it should be re-trimmed for the specified condition before starting the next maneuver. 
 
   (c) The other kinds of captures are usually done in a similar manner, with some 
minor differences.  G captures can be done from a constant-g turn or pull ups and pushovers 
using ± 0.2 g and ± 0.5 g.  Heading captures can be used to evaluate the yaw controller alone 
(usually small heading changes of 5 degrees or less). 
 
   (d) Bank angle captures are also commonly done using bank-to-bank rolls.  
Starting from a 15 degree bank angle, the pilot aggressively rolls and captures the opposite 15 
degree bank angle (total bank angle change of 30 degrees).  The pilot then rolls back and 
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captures 15 degrees bank in the original direction.  This procedure should continue for a few 
cycles.  The procedure is then repeated using 30 degree bank angles, and then repeated again 
using 45 degree bank angles.  A variation of this is to capture wings-level from the initial bank 
condition. 
 
   (e) Where suitable, combined conditions could be used as described in the task 
shown in paragraph (f), below, in which a target g and bank angle are tightly tracked until the 
target pitch attitude and heading are captured. 
 
   (f) The following upset and/or collision avoidance maneuvers have been found to 
be effective in evaluating PIO susceptibility when the airplane is flying at high altitude under 
conditions of low g to buffet onset, typically 0.3g.  This emphasis on cruise susceptibility stems 
from operational experiences, but should not be interpreted as placing less emphasis on other 
flight phases. 
 
    1 Trim for level flight at long range cruise Mach number.  Initiate a slight 
climb and slow the aircraft while leaving power/thrust set.  Push the nose over and set up a 
descending turn with 30 to 40 degrees of bank and approximately 10 degrees nose below the 
horizon, or as appropriate, to accelerate to the initial trim speed.  At the initial trim airspeed 
initiate a 1.5 g to 1.67 g (not to exceed deterrent buffet) pull up and establish a turn in the 
opposite direction to a heading which will intercept the initial course on which the airplane was 
trimmed.  Establish a pitch attitude which will provide a stabilized climb back to the initial trim 
altitude.  The pilot may use the throttles as desired during this maneuver and should pick a target 
g, bank angle, heading, and pitch attitude to be used prior to starting the maneuver.  The target g 
and bank angle should be set and tightly tracked until the target pitch attitude and heading are 
obtained respectively.  The stabilized steady heading climb should be tightly tracked for an 
adequate amount of time to allow the pilot to assess handling qualities, even through the initial 
trim altitude and course if required.  The pilot should qualitatively evaluate the airplane during 
both the gross acquisition and fine tracking portions of this task while looking for any tendency 
towards PIO in accordance with the criteria in paragraph 20d(6). 
 
    2 This maneuver should be repeated in the nose-down direction by 
accelerating to MMO from the trim condition 10 degrees nose down and then recover as above. 
 
    3 Trim for level flight as above.  Initiate a 1.5 g to 1.67 g (not to exceed 
deterrent buffet) pull-up and approximately a 30 degree bank turn.  Once the target g is set, 
transition the aircraft to approximately a 0.5 g pushover and reverse the turn to establish an 
intercept heading to the initial course.  Using power or thrust as required, set up a stabilized 
steady heading descent to intercept the initial course and altitude used for the trimmed condition.  
The pilot may continue the heading and descent through the initial conditions to allow more 
tracking time if needed.  Attempt to precisely set and track bank angle, g, heading, and pitch 
attitude as appropriate.  The pilot should qualitatively evaluate the airplane during both the gross 
acquisition and fine tracking portions of this task while looking for a PIO tendency in 
accordance with paragraph 20d(6). 
 
  (5) Fine Tracking Tasks. 
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   (a) These tasks may be used to assess the airplane’s PIO susceptibility when 
flying in turbulent atmospheric conditions.  In this task, a tracking target is displayed which 
commands pitch and roll changes for the evaluation pilot to follow.  Whatever visual cue is used 
(e.g., head up display (HUD), flight director, etc.), it should present the tracking task without 
filtering, smoothing, or bias.  The pitch and roll commands should be combinations of steps and 
ramps.  The sequence of pitch and roll commands should be designed so as to keep the airplane 
within ± 1,000 feet of the test altitude and within ±10 knots of the test airspeed.  The sequence 
should be long enough and complex enough that the pilot cannot learn to anticipate the 
commands.  The unfamiliarity is intended to help keep the test pilot’s gain high and to preclude 
inadvertent pilot compensation while accomplishing the task.  Such compensation, along with 
reduced gains, could mask any PIO tendencies. 
 
   (b) Even though these fine tracking tasks will provide insight into PIO 
susceptibility of a conventional airplane when flying in turbulence, other considerations apply to 
augmented airplane types.  For example, structural load alleviation systems that use the same 
flight control surface as the pilot will limit the pilot’s control authority in turbulent atmospheric 
conditions.  Under these circumstances of rate or position limiting, PIO tendencies will be more 
critical as previously discussed.  Therefore, specific evaluations for turbulent atmospheric 
conditions with these systems operating are necessary for these airplane types. 
 
   (c) For single axis tasks, it has been found that aural commands given in a timed 
sequence provide an adequate cue in the event it is not possible to modify the flight director to 
display the pitch commands. 
 
   (d) Based on PIO events seen in service, high altitude tracking tasks (with up to 
approximately ± 4° pitch excursions from trim occurring at varying intervals of approximately 2 
to 5 seconds) have been effective in evaluating PIO susceptibility.  These tasks have been used 
where the airplane is flying under conditions of low g margin to buffet onset.  The following 
time history is a pictorial representation of a sample task in MIL-STD-1797A that has the 
desired attributes for high altitude PIO evaluations: 
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Figure 20-1.  Sample Pitch Tracking Task 
 

 

FIGURE 20-1.  SAMPLE PITCH TRACKING TASK 
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  (6) PIO Assessment Criteria. 
 
   (a) The evaluation of an airplane for PIO susceptibility will be conducted using 
the FAA handling qualities rating method (HQRM) (See Appendix 5 for more information on 
the HQRM.).  Tasks should be designed to focus on any PIO tendencies that may exist.  Figure 
20-2 contains the descriptive material associated with PIO characteristics and its relationship to 
the PIO Rating Scale called out in the U.S. Military Standard. 
 
   (b) Figure 20-2 provides the FAA handling qualities (HQ) rating descriptions of 
airplane motions that may be seen during the conduct of specific PIO tasks or during tests 
throughout the entire certification flight test program.  The italicized phrases highlight major 
differences between rating categories in the table. 
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 Figure 20-2.  PIO Rating Criteria and Comparison To MIL Standard 

 
MIL 1797A 

STD. FAA HQ 
RATING 

PIO CHARACTERISTICS DESCRIPTION PIO 
RATING 
SCALE 

No tendency for pilot to induce undesirable motion. 1 

SAT 
Undesirable motions (overshoots) tend to occur when pilot initiates 
abrupt maneuvers or attempts tight control.  These motions can be 
prevented or eliminated by pilot technique. (No more than minimal 
pilot compensation is required.) 

2 

ADQ 

Undesirable motions (unpredictability or over control) easily 
induced when pilot initiates abrupt maneuvers or attempts tight 
control.  
These motions can be prevented or eliminated but only at sacrifice 
to task performance or through considerable pilot attention and 
effort.  (No more than extensive pilot compensation is required.)  

3 

CON 

Oscillations tend to develop when pilot initiates abrupt maneuvers 
or attempts tight control.  Adequate performance is not attainable 
and pilot has to reduce gain to recover.  (Pilot can recover by 
merely reducing gain.) 

4 

Divergent oscillations tend to develop when pilot initiates abrupt 
maneuvers or attempts tight control.  Pilot has to open control loop 
by releasing or freezing the controller. 

5 

UNSAT 
Disturbance or normal pilot control may cause divergent 
oscillation.  Pilot has to open control loop by releasing or freezing 
the controller. 

6 

 
 SAT = Satisfactory     CON = Controllable 
 ADQ = Adequate      UNSAT = Unsatisfactory or Failed 
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   (c) The acceptable HQ ratings for PIO tendencies is shown in Figure 9 of 
Appendix 5.  As described in that appendix, the minimum HQ rating, and consequently the 
pass/fail criteria, varies with the flight envelope, atmospheric disturbance considered, and failure 
state.  For example, Figure 20-3 below shows a handling qualities matrix for a tracking task with 
the airplane at aft c.g. trimmed in flight conditions giving 1.3 g to buffet onset. 
 

Figure 20-3.  Example of Acceptable HQ Rating For PIO Tendencies 
 

Airplane at aft c.g. trimmed in conditions giving 1.3 g to buffet onset 

AIRSPEED MLRC MLRC MLRC MLRC 
LOAD 

FACTOR 
RANGE 

 
0.8 TO 1.3 

 
-1.0 TO 2.5 

 
0.8 TO 1.3 

 
-1.0 TO 2.5 

BUFFET 
LEVEL 

ONSET DETERRENT ONSET DETERRENT 

TURBULENCE LIGHT LIGHT LIGHT LIGHT 
 

FAILURE 
 

NONE 
 

NONE 
IMPROBABLE 
FAILURE OF 

SAS 

IMPROBABLE 
FAILURE OF 

SAS 
FLIGHT 

ENVELOPE 
NFE LFE NFE LFE 

MINIMUM 
PERMITTED 
HQ RATING 

 
SAT 

 
ADQ 

 
ADQ 

 
CON 

 

 SAT = Satisfactory        ADQ = Adequate        CON = Controllable 

 NFE = Normal flight envelope        LFE = Limit flight envelope 

 SAS = Stability augmentation system 

 MLRC = Long range cruise Mach number 
 
  e. Maneuvering Characteristics - § 25.143(g). 
 
  (1) General.  An acceptable means of compliance with the requirement that stick forces 
may not be excessive when maneuvering the airplane is to demonstrate that, in a turn for 0.5g 
incremental normal acceleration (0.3g above 20,000 feet) at speeds up to VFC/MFC, the average 
stick force gradient does not exceed 120 pounds per g. 
 
  (2) Interpretive Material. 
 
   (a) The objective of § 25.143(g) is to ensure that the limit strength of any critical 
component on the airplane would not be exceeded in maneuvering flight.  In much of the 
structure, the load sustained in maneuvering flight can be assumed to be directly proportional to 
the load factor applied.  However, this may not be the case for some parts of the structure (e.g., 
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the tail and rear fuselage).  Nevertheless, it is accepted that the airplane load factor will be a 
sufficient guide to the possibility of exceeding limit strength on any critical component if a 
structural investigation is undertaken whenever the design positive limit maneuvering load factor 
is closely approached.  If flight testing indicates that the positive design limit maneuvering load 
factor could be exceeded in steady maneuvering flight with a 50 pound stick force, the airplane 
structure should be evaluated for the anticipated load at a 50 pound stick force.  The airplane will 
be considered to have been overstressed if limit strength has been exceeded in any critical 
component.  For the purposes of this evaluation, limit strength is defined as the lesser of either 
the limit design loads envelope increased by the available margins of safety, or the ultimate static 
test strength divided by 1.5. 
 
   (b) Minimum Stick Force to Reach Limit Strength. 
 
    1 A stick force of at least 50 pounds to reach limit strength in steady 
maneuvers or wind-up turns is considered acceptable to demonstrate adequate minimum force at 
limit strength in the absence of deterrent buffeting.  If heavy buffeting occurs before the limit 
strength condition is reached, a somewhat lower stick force at limit strength may be acceptable.  
The acceptability of a stick force of less than 50 pounds at the limit strength condition will 
depend upon the intensity of the buffet, the adequacy of the warning margin (i.e., the load factor 
increment between the heavy buffet and the limit strength condition), and the stick force 
characteristics.  In determining the limit strength condition for each critical component, the 
contribution of buffet loads to the overall maneuvering loads should be taken into account. 
 
    2 This minimum stick force applies in the en route configuration with the 
airplane trimmed for straight flight, at all speeds above the minimum speed at which the limit 
strength condition can be achieved without stalling.  No minimum stick force is specified for 
other configurations, but the requirements of § 25.143(g) are applicable in these conditions. 
 
   (c) Stick Force Characteristics. 
 
    1 At all points within the buffet onset boundary determined in accordance 
with § 25.251(e), but not including speeds above VFC/MFC, the stick force should increase 
progressively with increasing load factor.  Any reduction in stick force gradient with change of 
load factor should not be so large or abrupt as to impair significantly the ability of the pilot to 
maintain control over the load factor and pitch attitude of the airplane. 
 
    2 Beyond the buffet onset boundary, hazardous stick force characteristics 
should not be encountered within the permitted maneuvering envelope as limited by paragraph 
20e(2)(c)3.  It should be possible, by use of the primary longitudinal control alone, to rapidly 
pitch the airplane nose down so as to regain the initial trimmed conditions.  The stick force 
characteristics demonstrated should comply with the following: 
 
     (aa) For normal acceleration increments of up to 0.3g beyond buffet 
onset, where these can be achieved, local reversal of the stick force gradient may be acceptable, 
provided that any tendency to pitch up is mild and easily controllable. 
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     (bb)  For normal acceleration increments of more than 0.3g beyond buffet 
onset, where these can be achieved, more marked reversals of the stick force gradient may be 
acceptable.  It should be possible to contain any pitch-up tendency of the airplane within the 
allowable maneuvering limits, without applying push forces to the control column and without 
making a large and rapid forward movement of the control column. 
 
    3 In flight tests to satisfy paragraphs 20e(2)(c)(1) and (2), the load factor 
should be increased until either: 
 
     (aa)  The level of buffet becomes sufficient to provide a strong and 
effective deterrent to any further increase of the load factor; or 
 
     (bb)  Further increase of the load factor requires a stick force in excess of 
150 pounds (or in excess of 100 pounds when beyond the buffet onset boundary) or is impossible 
because of the limitations of the control system; or 
 
     (cc)  The positive limit maneuvering load factor established in 
compliance with § 25.337(b) is achieved. 
 
   (d) Negative Load Factors.  It is not intended that a detailed flight test assessment 
of the maneuvering characteristics under negative load factors should necessarily be made 
throughout the specified range of conditions.  An assessment of the characteristics in the normal 
flight envelope involving normal accelerations from 1g to zero g will normally be sufficient.  
Stick forces should also be assessed during other required flight testing involving negative load 
factors.  Where these assessments reveal stick force gradients that are unusually low, or that are 
subject to significant variation, a more detailed assessment, in the most critical of the specified 
conditions, will be required.  This may be based on calculations, provided they are supported by 
adequate flight test or wind tunnel data. 
 
 f. Thrust or Power Setting for Maneuver Capability Demonstrations.  The effect of thrust 
or power on maneuver capability is normally a function of only the thrust-to-weight ratio.  
Therefore, for those configurations in which the WAT-limited thrust or power setting is 
prescribed, it is usually acceptable to use the thrust or power setting that is consistent with a 
WAT-limited climb gradient at the test conditions of weight, altitude, and temperature.  
However, if the maneuver margin to stall warning (or other characteristic that might interfere 
with normal maneuvering) is reduced with increasing thrust or power, the critical conditions of 
both thrust or power and thrust-to-weight ratio should be taken into account when demonstrating 
the required maneuvering capabilities. 
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21. Longitudinal Control - § 25.145.  
 
 a. Explanation. 
 
  (1) Section 25.145(a) requires that there be adequate longitudinal control to promptly 
pitch the airplane nose down from at or near the stall to return to the original trim speed.  The 
intent is to ensure that there is sufficient pitch control for a prompt recovery if inadvertently 
slowed to the point of stall.  Although this requirement must be met with power off and at 
maximum continuous thrust or power, there is no intention to require stall demonstrations with 
thrust or power above that specified in § 25.201(a)(2).  Instead of performing a full stall at 
maximum continuous power or thrust, compliance may be assessed by demonstrating sufficient 
static longitudinal stability and nose down control margin when the deceleration is ended at least 
one second past stall warning during a one knot per second deceleration.  The static longitudinal 
stability during the maneuver and the nose down control power remaining at the end of the 
maneuver must be sufficient to assure compliance with the requirement. 
 
  (2) Section 25.145(b) requires changes to be made in flap position, power or thrust, 
and speed without undue effort when re-trimming is impractical.  The purpose is to ensure that 
any of these changes are possible assuming that the pilot finds it necessary to devote at least one 
hand to the initiation of the desired operation without being overpowered by the primary airplane 
controls.  The objective is to show that an excessive change in trim does not result from the 
application or removal of power or thrust or the extension or retraction of wing flaps.  The 
presence of gated positions on the flap control does not affect the requirement to demonstrate 
full flap extensions and retractions without changing the trim control.  Compliance with 
§ 25.145(b) also requires that the relation of control force to speed be such that reasonable 
changes in speed may be made without encountering very high control forces.  
 
  (3) Section 25.145(c) contains requirements associated primarily with attempting a go-
around maneuver from the landing configuration.  Retraction of the high-lift devices from the 
landing configuration should not result in a loss of altitude if the power or thrust controls are 
moved to the go-around setting at the same time that flap/slat retraction is begun.  The design 
features involved with this requirement are the rate of flap/slat retraction, the presence of any 
flap gates, and the go-around power or thrust setting.  The go-around power or thrust setting 
should be the same as is used to comply with the approach and landing climb performance 
requirements of §§ 25.121(d) and 25.119, and the controllability requirements of 
§§ 25.145(b)(3), 25.145(b)(4), 25.145(b)(5), 25.149(f), and 25.149(g).  The controllability 
requirements may limit the go-around power or thrust setting.     
 
  (4)  Section 25.145(d) provides requirements for demonstrating compliance with 
§ 25.145(c) when gates are installed on the flap selector.  Section 25.145(d) also specifies gate 
design requirements.  Flap gates, which prevent the pilot from moving the flap selector through 
the gated position without a separate and distinct movement of the selector, allow compliance 
with these requirements to be demonstrated in segments.  High lift device retraction must be 
demonstrated beginning from the maximum landing position to the first gated position, between 
gated positions, and from the last gated position to the fully retracted position. 
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   (a) If gates are provided, § 25.145(d) requires the first gate from the maximum 
landing position to be to be located at a position corresponding to a go-around configuration.  If 
there are multiple go-around configurations, the following criteria should be considered when 
selecting the location of the gate:  
 
    1 The expected relative frequency of use of the available go-around 
configurations.  
 
    2 The effects of selecting the incorrect high-lift device control position.  
 
    3 The potential for the pilot to select the incorrect control position, 
considering the likely situations for use of the different go-around positions.  
 
    4 The extent to which the gate(s) aid the pilot in quickly and accurately 
selecting the correct position of the high-lift devices.  
 
   (b) Regardless of the location of any gates, initiating a go-around from any of the 
approved landing positions should not result in a loss of altitude.  Therefore, § 25.145(d) requires 
that compliance with § 25.145(c) be demonstrated for retraction of the high-lift devices from 
each approved landing position to the control position(s) associated with the high-lift device 
configuration(s) used to establish the go-around procedure(s) from that landing position.  A 
separate demonstration of compliance with this requirement should only be necessary if there is 
a gate between an approved landing position and its associated go-around position(s).  If there is 
more than one associated go-around position, conducting this test using the go-around 
configuration with the most retracted high-lift device position should suffice, unless there is a 
more critical case.  If there are no gates between any of the landing flap positions and their 
associated go-around positions, the demonstrations discussed in paragraph 21a(4) above should 
be sufficient to show compliance with this provision of § 25.145(d).  
 
 b. Procedures.  The following test procedures outline an acceptable means for 
demonstrating compliance with § 25.145.  These tests may be conducted at an optional altitude 
in accordance with § 25.21(c).  Where applicable, the conditions should be maintained on the 
engines throughout the maneuver.  
 
  (l) Longitudinal control recovery, § 25.145(a). 
 
   (a) Configuration: 
 
    1 Maximum weight, or a lighter weight if more critical.  
 
    2 Critical c.g. position.  
 
    3 Landing gear extended.  
 
    4 Wing flaps retracted and extended to the maximum landing position.  
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    5 Engine power or thrust at idle and maximum continuous.  
 
   (b) Test procedure:  The airplane must be trimmed at the speed for each 
configuration as prescribed in § 25.103(b)(6).  The airplane should then be decelerated at 1 knot 
per second with wings level.  For tests at idle power or thrust, the applicant must demonstrate 
that the nose can be pitched down from any speed between the trim speed and the stall.  
Typically, the most critical point is at the stall when in stall buffet.  The rate of speed increase 
during the recovery should be adequate to promptly return to the trim point.  Data from the stall 
characteristics testing can be used to evaluate this capability at the stall.  For tests at maximum 
continuous power or thrust, the maneuver need not be continued for more than one second 
beyond the onset of stall warning.  However, the static longitudinal stability characteristics 
during the maneuver, and the nose down control power remaining at the end of the maneuver, 
must be sufficient to assure that a prompt recovery to the trim speed could be attained if the 
airplane is slowed to the point of stall. 
 
  (2) Longitudinal control, flap extension, § 25.145(b)(1). 
 
   (a) Configuration: 
 
    1 Maximum landing weight or a lighter weight if considered more critical. 
 
    2 Critical c.g. position.  
 
    3 Wing flaps retracted.  
 
    4 Landing gear extended.  
 
    5 Engine power or thrust at flight idle.  
 
   (b) Test procedure:  The airplane must be trimmed at a speed of 1.3 VSR.  The 
flaps must be extended to the maximum landing position as rapidly as possible while 
maintaining approximately 1.3 VSR for the flap position existing at each instant throughout the 
maneuver.  The control forces must not exceed 50 lbs. (the maximum force for short term 
application that can be applied readily by one hand) throughout the maneuver without changing 
the trim control.  
 
  (3) Longitudinal control, flap retraction, § 25.145(b)(2) & (3). 
 
   (a) Configuration:  
 
    1 Maximum landing weight or a lighter weight if considered more critical.  
 
    2 Critical c.g. position.  
 
    3 Wing flaps extended to the maximum landing position.  
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    4 Landing gear extended.  
 
    5 Engine power or thrust at flight idle and the go-around power or thrust 
setting.  
 
   (b) Test procedure:  With the airplane trimmed at 1.3 VSR, the flaps must be 
retracted to the full up position while maintaining approximately 1.3 VSR for the flap position 
existing at each instant throughout the maneuver.  The longitudinal control force must not 
exceed 50 lbs. throughout the maneuver without changing the trim control.  
 
  (4) Longitudinal control, power or thrust application, § 25.145(b)(4) & (5). 
 
   (a) Configuration: 
 
    1 Maximum landing weight or a lighter weight if considered more critical.  
 
    2 Critical c.g. position.  
 
    3 Wing flaps retracted and extended to the maximum landing position.  
 
    4 Landing gear extended.  
 
    5 Engine power or thrust at flight idle.  
 
   (b) Test procedure:  The airplane must be trimmed at a speed of 1.3 VSR.  Quickly 
set go-around power or thrust while maintaining the speed of 1.3 VSR.  The longitudinal control 
force must not exceed 50 pounds throughout the maneuver without changing the trim control.  
 
  (5) Longitudinal control, airspeed variation, § 25.145(b)(6). 
 
   (a) Configuration: 
 
    1 Maximum landing weight or a lighter weight if considered more critical.  
 
    2 Most forward c.g. position.  
 
    3 Wing flaps extended to the maximum landing position.  
 
    4 Landing gear extended.  
 
    5 Engine power or thrust at flight idle.  
 
   (b) Test Procedure:  The airplane must be trimmed at a speed of 1.3 VSR.  The 
speed should then be reduced to VSW and then increased to 1.6 VSR, or the maximum flap 
extended speed, VFE, whichever is lower.  The longitudinal control force must not be greater than 
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50 lbs.  Data from the static longitudinal stability tests in the landing configuration at forward 
c.g., § 25.175(d), may be used to show compliance with this requirement.  
 
  (6) Longitudinal control, flap retraction and power or thrust application, § 25.145(c).  
 
   (a) Configuration: 
 
    1 Critical combinations of maximum landing weights and altitudes.  
 
    2 Critical c.g. position.  
 
    3 Wing flaps extended to the maximum landing position and gated position, 
if applicable.  
 
    4 Landing gear extended.  
 
    5 Engine power or thrust for level flight at a speed of 1.08 VSR for propeller 
driven airplanes, or 1.13VSR for turbojet powered airplanes.  
 
   (b) Test procedure.  With the airplane stable in level flight at a speed of 1.08 VSR 
for propeller driven airplanes, or 1.13 VSR for turbojet powered airplanes, retract the flaps to the 
full up position, or the next gated position, while simultaneously setting go-around power or 
thrust.  Use the same power or thrust as is used to comply with the performance requirement of 
§ 25.121(d), as limited by the applicable controllability requirements.  It must be possible, 
without requiring exceptional piloting skill, to prevent losing altitude during the maneuver.  
Trimming is permissible at any time during the maneuver.  If gates are provided, conduct this 
test beginning from the maximum landing flap position to the first gate, from gate to gate, and 
from the last gate to the fully retracted position.  If there is a gate between any landing position 
and its associated go-around position(s), this test should also be conducted from that landing 
position through the gate to the associated go-around position.  If there is more than one 
associated go-around position, this additional test should be conducted using the go-around 
position corresponding to the most retracted flap position, unless another position is more 
critical.  Keep the landing gear extended throughout the test. 
 
  (7) Longitudinal control, out-of-trim takeoff conditions, §§ 25.107(e)(4) and 
25.143(a)(1).  See paragraphs 10b(9)(c)3 and 4. 
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 22. Directional and Lateral Control - § 25.147.  
 
 a. Explanation.  
 
  (1) Sections 25.147(a) and (b) provide criteria to determine if the airplane may have 
dangerous characteristics such as rudder lock or loss of directional control if it is maneuvered 
only with the rudder, while maintaining wings level, when one or two critical engines are 
inoperative.  Some yaw capability into the operating engine(s) should be possible.  It should also 
be possible to make reasonably sudden heading changes of up to 15 degrees, as limited by rudder 
force or deflection, toward the inoperative engine(s).  The intention of the requirement is that the 
airplane can be yawed as prescribed without needing to bank the airplane.  Small variations of 
bank angle that are inevitable in a realistic flight test demonstration are acceptable.  
 
  (2) Sections 25.147(c) and (e) require an airplane to be easily controllable with the 
critical engine(s) inoperative.  Section 25.147(d) further requires that lateral control be sufficient 
to provide a roll rate necessary for safety, without excessive control forces or travel, at the 
speeds likely to be used with one engine inoperative.  Compliance can normally be demonstrated 
in the takeoff configuration at V2 speed, because this condition is usually the most critical.  
Normal operation of a yaw stability augmentation system (SAS) should be considered in 
accordance with the normal operating procedures.  Roll response with all engines operating, 
§ 25.147(f), should be satisfactory for takeoff, approach, landing, and high speed configurations.  
Any permissible configuration that could affect roll response should be evaluated.  
 
 b. Procedures.  The following test procedures outline an acceptable means for 
demonstrating compliance with § 25.147. 
 
  (1) Directional Control - General, § 25.147(a).  
 
   (a) Configuration:  
 
    1 Maximum landing weight.  
 
    2 Most aft c.g. position.  
 
    3 Wing flaps extended to the approach position.  
 
    4 Landing gear retracted.  
 
    5 Yaw SAS on, and off if applicable.  
 
    6 Operating engine(s) at the power or thrust for level flight at 1.3 VSR, but 
not more than maximum continuous power or thrust.  
 
    7 Inoperative engine that would be most critical for controllability, with the 
propeller (for propeller airplanes) feathered.  
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   (b) Test Procedure.  The airplane must be trimmed in level flight at the most 
critical altitude in accordance with § 25.21(c).  Make heading changes into and away from the 
inoperative engine of up to 15 degrees (not using more than 150 lbs. rudder force), using the roll 
controls to maintain approximately wings level flight.  The airplane should be controllable and 
free from any hazardous characteristics during this maneuver.  For airplanes equipped with a 
rudder boost system, the evaluation should be done without rudder boost if the boost system can 
be inoperative. 
 
  (2) Directional Control - Four or More Engines, § 25.147(b).  
 
   (a) Configuration:  
 
    1 Maximum landing weight.  
 
    2 Most forward c.g. position.  
 
    3 Wing flaps in the most favorable climb position (normally retracted).  
 
    4 Landing gear retracted.  
 
    5 Yaw SAS on, and off, as applicable.  
 
    6 Operating engines at the power or thrust required for level flight at 1.3 
VSR1, but not more than maximum continuous power or thrust.  
 
    7 Two inoperative engines that would be most critical for controllability 
with (if applicable) propellers feathered.  
 
   (b) Test Procedure.  The procedure outlined in subparagraph 22b(1)(b), above, is 
applicable to this test.  
 
  (3) Lateral Control - General, § 25.147(c).  
 
   (a) Configuration:  
 
    1 Maximum takeoff weight.  
 
    2 Most aft c.g. position.  
 
    3 Wing flaps in the most favorable climb position.  
 
    4 Landing gear retracted and extended.  
 
    5 Yaw SAS on, and off, as applicable.  
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    6 Operating engine(s) at maximum continuous power or thrust.  
 
    7 The inoperative engine that would be most critical for controllability, 
with the propeller (for propeller airplanes) feathered.  
 
   (b) Test Procedure.  With the airplane trimmed at 1.3 VSR1, turns with a bank 
angle of 20 degrees must be demonstrated with and against the inoperative engine from a steady 
climb at 1.3 VSR1.  It should not take exceptional piloting skill to make smooth, predictable turns.  
 
  (4) Lateral Control – Roll Capability, § 25.147(d). 
 
   (a) Configuration: 
 
    1 Maximum takeoff weight. 
 
    2 Most aft c.g. position.  
 
    3 Wing flaps in the most critical takeoff position.  
 
    4 Landing gear retracted.  
 
    5 Yaw SAS on, and off, as applicable.  
 
    6 Operating engine(s) at maximum takeoff power or thrust.  
 
    7 The inoperative engine that would be most critical for controllability, 
with propellers (for propeller airplanes) feathered.  
 
   (b) Test Procedure.  With the airplane in trim, or as nearly as possible in trim, for 
straight flight at V2, establish a steady 30 degree banked turn.  Demonstrate that the airplane can 
be rolled to a 30 degree bank angle in the other direction in not more than 11 seconds.  The 
rudder may be used to the extent necessary to minimize sideslip.  Demonstrate this maneuver in 
the most adverse direction.  The maneuver may be unchecked, that is, the pilot need not apply a 
control input to stop the roll until after the 30 degree bank angle is achieved.  Care should be 
taken to prevent excessive sideslip and bank angle during the recovery. 
 
  (5) Lateral Control - Four or More Engines, § 25.147(e).  
 
   (a) Configuration:  
 
    1 Maximum takeoff weight.  
 
    2 Most aft c.g. position.  
 
    3 Wing flaps in the most favorable climb position.  
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    4 Landing gear retracted and extended.  
 
    5 Yaw SAS on, and off, as applicable.  
 
    6 Operating engines at maximum continuous power or thrust.  
 
    7 Two inoperative engines most critical for controllability, with propellers 
(for propeller airplanes) feathered. 
 
   (b) Test Procedure:  The procedure outlined in paragraph 22b(3)(b) is applicable 
to this test. 
 
  (6) Lateral Control - All Engines Operating, § 25.147(f).  
 
   (a) Configuration:  All configurations within the flight envelope for normal 
operation.  
 
   (b) Test Procedure:  This is primarily a qualitative evaluation that should be 
conducted throughout the test program.  Roll performance should be investigated throughout the 
flight envelope, including speeds to VFC/MFC, to ensure adequate peak roll rates for safety, 
considering the flight condition, without excessive control force or travel.  Roll response during 
sideslips expected in service should provide maneuvering capabilities adequate to recover from 
such conditions.  Approach and landing configurations should be carefully evaluated to ensure 
adequate control to compensate for gusts and wake turbulence while in close proximity to the 
ground.  
 
23. Minimum Control Speed - § 25.149.  
 
 a. Explanation.   
 
  (1) General.  Section 25.149 defines requirements for minimum control speeds during 
takeoff climb (VMC), during takeoff ground roll (VMCG), and during approach and landing (VMCL 
and VMCL-2).  The VMC (commonly referred to as VMCA) requirements are specified in 
§ 25.149(a), (b), (c) and (d); the VMCG requirements are described in § 25.149(e); and the VMCL 
and VMCL-2 requirements are covered in § 25.149(f), (g) and (h).  Section 25.149(a) states, “...the 
method used to simulate critical engine failure must represent the most critical mode of 
powerplant failure with respect to controllability expected in service.”  That is, the power or 
thrust loss from the inoperative engine must be at the rate that would occur if an engine suddenly 
became inoperative in service.  Prior to Amendment 25-42 to § 25.149, the regulation required 
that rudder control forces must not exceed 180 lbs.  With the adoption of Amendment 25-42, 
rudder control forces became limited to 150 lbs.  The relationships between VEF, V1, and VMCG 
are discussed in paragraph 10, Takeoff and Takeoff Speeds, and paragraph 11, Accelerate-Stop 
Distance.  
 
  (2) Safety concerns addressed by VMCA.  When flying with an inoperative engine, the 
asymmetric yawing moment must be compensated by aerodynamic forces created by rudder 
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deflection and sideslip.  When the speed decreases, sideslip increases rapidly in a non-linear 
manner.  The purpose of the VMCA requirement is to ensure the airplane remains safely 
controllable with the maximum power or thrust asymmetry at any speed down to VMCA. 
 
  (3) Weight effect on VMCA.  To maintain straight flight with an inoperative engine, as 
required by § 25.149(b), the lateral aerodynamic forces resulting from sideslip and rudder 
deflection must be balanced by the lateral component of weight (i.e., W * sin(bank angle)).  The 
bank angle necessary to maintain straight flight is therefore approximately inversely proportional 
to the weight.  Since § 25.149(b) allows VMCA to be determined with up to 5 degrees of bank 
angle, this introduces a weight effect on VMCA.  The heavier the weight, the lower the VMCA, but 
the greater will be the demonstrated sideslip.  As an example, flying a heavy airplane at a VMCA 
speed determined at a lighter weight will result in the same sideslip, but a smaller bank angle 
(e.g., 4 degrees instead of 5 degrees if the airplane is 25 percent heavier). 
 
 b. Procedures. 
 
  (1) General. 
 
   (a) Prior to beginning the minimum control speed tests, the applicant should 
verify which engine’s failure will result in the largest asymmetric yawing moment (i.e., the 
“critical” engine).  This is typically done by setting one outboard engine to maximum power or 
thrust, setting the corresponding opposite engine at idle, and decelerating with wings level until 
full rudder is required.  By alternating power or thrust on/power or thrust off from left to right, 
the critical engine can be defined as the idle engine that requires the highest minimum speed to 
maintain a constant heading with full rudder deflection. 
 
   (b) For propeller-driven airplanes, VMCA, VMCG, and VMCL (and VMCL-2, as 
applicable) should be determined by rendering the critical engine(s) inoperative and allowing the 
propeller to attain the position it automatically assumes.  However, for some engine/propeller 
installations, a more critical drag condition could be produced as the result of a failure mode that 
results in a partial power condition that does not activate the automatic propeller drag reduction 
system (e.g., autofeather system).  One example is a turbopropeller installation that can have a 
fuel control failure, which causes the engine to go to flight idle, resulting in a higher asymmetric 
yawing moment than would result from an inoperative engine.  In such cases, in accordance with 
§ 25.149(a), the minimum control speed tests must be conducted using the most critical failure 
mode.  For propeller-driven airplanes where VMCA is based on operation of a propeller drag 
reduction system, VMCA should also be defined with the critical engine at idle to address the 
training situation where engine failure is simulated by retarding the critical engine to idle.  If 
VMCA at idle is more than one knot greater than for the engine failure with an operating drag 
reduction system, the idle engine VMCA should be included in the normal procedures section of 
the AFM as advisory information to maintain the level of safety in the aforementioned training 
situation. 
 
   (c) AFM values of VMCA, VMCG, and VMCL (and VMCL-2, as applicable) should be 
based on the maximum net power or thrust reasonably expected for a production engine.  These 
speeds should not be based on specification power or thrust, since this value represents the 
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minimum power or thrust guaranteed by the engine manufacturer, and the resulting minimum 
control speeds will not be representative of what could be achieved in operation.  The maximum 
power or thrust used for scheduled AFM minimum control speeds should represent the high side 
of the tolerance band, but may be determined by analysis instead of tests. 
 
   (d) When determining VMCA, VMCL and VMCL-2, consideration should be given to 
the adverse effect of maximum approved lateral fuel imbalance on lateral control availability.  
This is especially of concern if tests or analysis show that the lateral control available is the 
determining factor of a particular VMC. 
 
   (e) For changes to approved designs, the effect of any aerodynamic or propulsive 
changes on compliance with 25.149 must be assessed per § 21.20.  For example, for design 
changes involving an increase in engine thrust, the effect of the higher thrust on minimum 
control speeds must be specifically evaluated, and, if found to be not negligible, must be 
accounted for. 
 
  (2) Minimum Control Speeds - Air (VMCA).  
 
   (a) In showing compliance with the VMCA requirements, the following two 
conditions should be satisfied:  (Separate tests are usually conducted to show compliance with 
these two conditions.)  
 
    1 The stabilized (static) condition where constant heading is maintained 
without exceeding a 5-degree bank angle, and  
 
    2 The dynamic condition in which control is maintained without exceeding 
a heading change of 20 degrees.  
 
   (b) Static Test Procedure and Required Data. 
 
    1 To determine VMCA, use the configuration specified in § 25.149, except 
that VMCA is normally determined at minimum weight in order to minimize the stall speed and 
because static VMCA decreases with increased weight if a 5 degree bank angle is used.  The 
requirement of § 25.149(c) that VMCA not exceed 1.13 VSR is based on VSR at maximum sea level 
takeoff weight.  With the critical engine inoperative, the corresponding opposite engine should 
be adjusted to maximum takeoff power/thrust, and the airspeed decreased until heading can just 
be maintained with full rudder and no more than a 5 degree bank into the operating engine.  For 
airplanes with more than two engines, the inboard engine(s) may be set to any power or thrust 
necessary to assist in developing the desired level of asymmetric power or thrust, or to achieve 
the desired flight path angle (normally level flight). 
 
    2 If the maximum asymmetric power or thrust that is permitted by the AFM 
operating limitations was maintained at the test day VMCA, and the rudder pedal force did not 
exceed the limit specified in § 25.149(d), the resulting speed may be used as the single value of 
VMCA for the airplane.  If, at the option of the applicant, the AFM value of VMCA is to vary with 
pressure altitude and temperature, the test day minimum control speed and the corresponding 
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power or thrust should be used to calculate an equivalent yawing moment coefficient (CN).  This 
CN value may then be used to calculate VMCA as a function of takeoff power or thrust, thus 
permitting VMCA to be scheduled as a function of pressure altitude and temperature for takeoff 
data expansion and presentation in the AFM.  (See Appendix 6 for further discussion of VMCA 
correction.) 
 
    3 If maximum allowable takeoff power or thrust could not be developed at 
the flight test conditions, but maximum rudder deflection was achieved, then the VMCA value 
corresponding to sea level standard day maximum asymmetric power or thrust may be calculated 
from the CN attained at the test value of VMCA.  Extrapolation using this constant CN method 
should be limited to 5 percent of the test day asymmetric power or thrust, and should only be 
permitted if the rudder pedal force at the test day VMCA was not more than 95 percent of the limit 
value specified in § 25.149(d).  For extrapolation beyond 5 percent power or thrust, a more 
rigorous analysis, using all the applicable stability and control terms, should be made.  (See 
Appendix 6 for further discussion of VMCA correction.) 
 
    4 If VMCA could not be achieved due to stall buffet, or excessive rudder 
pedal force, a parametric investigation should be undertaken to determine whether VMCA is 
limited by stall speed, maximum rudder deflection, or maximum allowable rudder pedal force.  
(See Appendix 7.) 
 
   (c) Dynamic Test Procedures and Required Data. 
 
    1 After the static VMCA tests have been completed, dynamic engine cuts 
should be evaluated at a series of decreasing airspeeds to show that sudden engine failure at any 
speed down to the static VMCA value meets the requirements of § 25.149.  The dynamic VMCA 
test is conducted by applying the maximum approved power/thrust to all outboard engines, 
stabilizing at the test airspeed, and then cutting fuel to the critical engine.  The pilot must be able 
to recover to a straight flight condition (constant heading) with an angle of bank of not more than 
5 degrees -- 
 
     (aa)  Without deviating more than 20 degrees from the original heading,  
 
     (bb)  While maintaining the test airspeed, without reducing power/thrust 
on the operating engine(s), and  
 
     (cc)  Without exceeding the rudder pedal force limit of § 25.149(d).   
 
    2 In accordance with § 25.149(d), the airplane may not assume any 
dangerous attitude, nor require exceptional piloting skill, alertness, or strength.  The maximum 
bank angle achieved during the tests may exceed 5 degrees provided the airplane characteristics 
comply with this qualitative requirement.  If the dynamic tests result in a VMCA greater than the 
static value, the increment between the static and dynamic VMCA at the same altitude should be 
added to the sea level extrapolated value.  If the dynamic value is less than the static value, the 
static VMCA should be used for the AFM data expansion. 
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    3 If static VMCA is near stall speed at the minimum practicable test weight, 
or if the thrust-to-weight ratio (T/W) results in a trimmed pitch attitude of more than 20 degrees, 
it is not feasible to attempt to accurately define a quantitative value of VMCA using a sudden 
engine cut because of the dynamics of the rapid pitch down maneuver required, and the hazard 
associated with a potential spin entry.  Additionally, an extreme nose up attitude followed by an 
engine cut is not representative of an operational takeoff engine failure.  Since § 25.107(e)(1)(ii) 
requires VR to be not less than 1.05 VMCA, and there is some additional speed increase prior to 
lift off, a transport airplane is typically never airborne below approximately 1.08 VMCA.  
Therefore, instead of using the dynamic method to define VMCA for these aircraft with high T/W 
or stall speed coincident with VMCA, it is more appropriate for a dynamic engine cut to be 
evaluated only for acceptable controllability, and at a more representative speed.  For these 
airplanes, a dynamic engine cut should be evaluated at an airspeed of either 1.08 VSR or 1.1 
VMCA (static), whichever is greater.  During the entry to, and recovery from this maneuver, all 
the requirements of § 25.149(d) must be met. 
 
    4 For airplanes with rudder travel-limited VMCA’s that have increased power 
or thrust engines installed, with no changes to the airframe’s geometric layout or dimensions, it 
may not be necessary to conduct dynamic VMCA  flight testing if the power or thrust has not 
increased more than 10 percent above the level at which dynamic VMCA had previously been 
demonstrated.  (See Appendix 6). 
 
  (3) Minimum Control Speed - Ground (VMCG) - § 25.149(e).   
 
   (a) It must be demonstrated that, when the critical engine is suddenly made 
inoperative at VMCG during the takeoff ground roll, the airplane is safely controllable if the 
takeoff is continued.  During the demonstration, the airplane must not deviate more than 30 ft. 
(25 ft. prior to Amendment 25-42) from the pre-engine-cut projected ground track.  The critical 
engine) for ground minimum control speed testing should be determined during the takeoff 
ground run using techniques similar to these described in paragraph 23b(1).  If there is a 
significant difference in left and right rudder deflection, the loss of asymmetric propeller disc 
loading, due to near zero angle-of-attack during the takeoff roll, could result in the critical engine 
being on the opposite side of the airplane relative to the airborne minimum control speed tests. 
 
   (b) Work up tests may be conducted by abruptly retarding the critical engine to 
idle to determine the airplane asymmetric control characteristics and provide data from which an 
estimate of VMCG can be made.  Due to the engine spindown characteristics with the critical 
engine retarded to idle, the speed will not, in general, be representative of the VMCG speed that 
would be obtained with a fuel cut.  Therefore, the certification tests for VMCG should be 
conducted using fuel cuts.  Starting from a speed comfortably above the estimated VMCG and 
with the maximum takeoff power or thrust level to be certified, several fuel cuts should be made 
at decreasing calibrated airspeeds to establish the minimum airspeed at which the lateral 
deviation is less than or equal to 30 ft.  VMCG is determined for zero crosswind conditions.  
However, in light crosswind test conditions the VMCG value determined should be that which is 
appropriate to the adverse crosswind or, at the applicant’s option, may be corrected to a zero 
crosswind value using runs made on reciprocal headings.  
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   (c) During determination of VMCG, engine failure recognition should be provided 
by: 
 
    1 The pilot feeling a distinct change in the directional tracking 
characteristics of the airplane; or 
 
    2 The pilot seeing a directional divergence of the airplane with respect to 
the view outside the airplane. 
 
   (d) Directional control of the airplane should be accomplished by use of the 
rudder only.  All other controls, such as ailerons and spoilers, should only be used to correct any 
alterations in the airplane attitude and to maintain a wings level condition.  Pilot input to controls 
to supplement the rudder effectiveness should not be used.  Care should also be taken not to 
inadvertently apply brake pressure during large rudder deflections, as this will invalidate the test 
data. 
 
   (e) VMCG testing should be conducted at the most critical weight in the range 
where VMCG may impact AFM V1 speeds.  
 
   (f) VMCG testing should be conducted at aft c.g. and with the nose wheel free to 
caster, to minimize the stabilizing effect of the nose gear.  If the nose wheel does not caster 
freely, the test may be conducted with enough nose up elevator applied to lift the nose wheel off 
the runway. 
 
   (g) VMCG testing should not be conducted on runways with excessive crowning 
(i.e., cross-runway slope) unless the effects of such crowning are determined to be conservative. 
 
   (h) For airplanes with certification bases prior to Amendment 25-42, VMCG values 
may be demonstrated with nose wheel rudder pedal steering operative for dispatch on wet 
runways.  The test should be conducted on an actual wet, smooth (i.e., not grooved or PFC) 
runway.  The test(s) should include engine failure at or near a minimum VEF associated with 
minimum VR to demonstrate adequate controllability during rotation, liftoff, and the initial 
climbout.  The VMCG values obtained by this method are applicable for wet or dry runways only, 
not for icy runways. 
 
  (4) Minimum Control Speed During Approach and Landing (VMCL) - § 25.149(f).  
 
   (a) This section is intended to ensure that the airplane is safely controllable 
following an engine failure during an all-engines-operating approach and landing.  From a 
controllability standpoint, the most critical case usually consists of an engine failing after the 
power or thrust has been increased to perform a go-around from an all-engines-operating 
approach.  Section 25.149(f) requires the minimum control speed to be determined that allows a 
pilot of average skill and strength to retain control of the airplane after the critical engine 
becomes inoperative and to maintain straight flight with less than 5 degrees of bank angle.  
Section 25.149(h) requires that sufficient lateral control be available at VMCL to roll the airplane 
through an angle of 20 degrees, in the direction necessary to initiate a turn away from the 
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inoperative engine, in not more than five seconds when starting from a steady straight flight 
condition.  
 
   (b) Conduct this test using the most critical of the all-engines-operating approach 
and landing configurations or, at the option of the applicant, each of the all-engines-operating 
approach and landing configurations.  The procedures given in paragraphs 23b(2)(b) and (c) for 
VMCA may be used to determine VMCL, except that flap and trim settings should be appropriate to 
the approach and landing configurations, the power or thrust on the operating engine(s) should 
be set to the go-around power or thrust setting, and compliance with all VMCL requirements of 
§ 25.149(f) and (h) must be demonstrated. 
 
   (c) In accordance with § 25.149(f)(5) for propeller driven airplanes, the propeller 
must be in the position it achieves without pilot action following engine failure, assuming the 
engine fails while at the power or thrust necessary to maintain a three degree approach path 
angle. 
 
   (d) At the option of the applicant, a one-engine-inoperative landing minimum 
control speed, VMCL(1 out), may be determined in the conditions appropriate to an approach and 
landing with one engine having failed before the start of the approach.  In this case, only those 
configurations recommended for use during an approach and landing with one engine 
inoperative need be considered.  The propeller of the inoperative engine, if applicable, may be 
feathered throughout.  The resulting value of VMCL(1 out) may be used in determining the 
recommended procedures and speeds for a one-engine-inoperative approach and landing. 
 
  (5) Minimum Control Speed with Two Inoperative Engines During Approach and 
Landing (VMCL-2) - § 25.149(g). 
 
   (a) For airplanes with three or more engines, VMCL-2 is the minimum speed for 
maintaining safe control during the power or thrust changes that are likely to be made following 
the failure of a second critical engine during an approach initiated with one engine inoperative.  
 
   (b) In accordance with § 25.149(g)(5) for propeller driven airplanes, the propeller 
of the engine that is inoperative at the beginning of the approach may be in the feathered 
position.  The propeller of the more critical engine must be in the position it automatically 
assumes following engine failure. 
 
   (c) Conduct this test using the most critical approved one-engine-inoperative 
approach or landing configuration (usually the minimum flap deflection), or at the option of the 
applicant, each of the approved one-engine-inoperative approach and landing configurations.  
The following demonstrations should be conducted to determine VMCL-2: 
 
    1 With the power or thrust on the operating engines set to maintain a minus 
3 degree glideslope with one critical engine inoperative, the second critical engine is made 
inoperative and the remaining operating engine(s) are advanced to the go-around power or thrust 
setting.  The VMCL-2 speed is established by the procedures presented in paragraphs 23b(2)(b) 
and (c) for VMCA, except that flap and trim settings should be appropriate to the approach and 

 113 



10/16/12  AC 25-7C 

landing configurations, the  power or thrust on the operating engine(s) should be set to the go-
around power or thrust setting, and compliance with all VMCL-2 requirements of § 25.149(g) and 
(h) must be demonstrated. 
 
    2 With power or thrust on the operating engines set to maintain a minus 3 
degree glideslope, with one critical engine inoperative:   
 
     (aa) Set the airspeed at the value determined above in step (1) and, with 
zero bank angle, maintain a constant heading using trim to reduce the control force to zero.  If 
full trim is insufficient to reduce the control force to zero, full trim should be used plus control 
deflection as required; and  
 
     (bb) Make the second critical engine inoperative and retard the remaining 
operating engine(s) to minimum available power or thrust without changing the directional trim.  
The VMCL-2 determined in paragraph (1) is acceptable if constant heading can be maintained 
without exceeding a 5 degree bank angle and the limiting conditions of § 25.149(h).  
 
    3 Starting from a steady straight flight condition, demonstrate that sufficient 
lateral control is available at VMCL-2 to roll the airplane through an angle of 20 degrees in the 
direction necessary to initiate a turn away from the inoperative engines in not more than five 
seconds.  This maneuver may be flown in a bank-to-bank roll through a wings level attitude. 
 
   (d) At the option of the applicant, a two-engines-inoperative landing minimum 
control speed, VMCL-2(2 out), may be determined in the conditions appropriate to an approach and 
landing with two engines having failed before the start of the approach.  In this case, only those 
configurations recommended for use during an approach and landing with two engines 
inoperative need be considered.  The propellers of the inoperative engines, if applicable, may be 
feathered throughout.  The values of VMCL-2 or VMCL-2(2 out) should be used as guidance in 
determining the recommended procedures and speeds for a two-engines-inoperative approach 
and landing. 
 
  (6) Autofeather Effects.  Where an autofeather or other drag limiting system is 
installed, and will be operative at approach power settings, its operation may be assumed in 
determining the propeller position achieved when the engine fails.  Where automatic feathering 
is not available, the effects of subsequent movements of the engine and propeller controls should 
be considered, including fully closing the power lever of the failed engine in conjunction with 
maintaining the go-around power setting on the operating engine(s). 
 

 
Section 4.  Trim  

 
 
24. Trim - § 25.161.   
 
 a. Explanation.  Adequate trim capability should be provided for any flight condition that it 
is reasonable to assume will be maintained steadily for any appreciable time. 
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 b. Procedures. 
 
  (1)  The trim requirements specify the ranges of speed and the airplane configurations at 
which the airplane must be able to maintain trim. 
 
 (2)  All weights, from the minimum in-flight weight to the maximum takeoff weight, 
should be considered.  For airplanes with unpowered controls, the lowest weight may be more 
critical since this results in the lowest airspeed. 

 
 

Section 5.  Stability  
 
 
25. General - § 25.171.  [Reserved] 
 
26. Static Longitudinal Stability and Demonstration of Static Longitudinal Stability - 
§§ 25.173 and 25.175.  
      
 a. Explanation.  
 
  (1) Section 25.173 - Static Longitudinal Stability. 
 
   (a) Compliance with the general requirements of § 25.173 is determined from a 
demonstration of static longitudinal stability under the conditions specified in § 25.175.  
 
   (b) The requirement is to have a pull force to obtain and maintain speeds lower 
than trim speed, and a push force to obtain and maintain speeds higher than trim speed.  There 
may be no force reversal at any speed that can be obtained, except lower than the minimum for 
steady, unstalled flight or, higher than the landing gear or wing flap operating limit speed or 
VFC/MFC, whichever is appropriate for the test configuration.  The required trim speeds are 
specified in § 25.175. 
 
   (c) When the control force is slowly released from any speed within the required 
test speed range, the airspeed must return to within 10 percent of the original trim speed in the 
climb, approach, and landing conditions, and return to within 7.5 percent of the trim speed in the 
cruising condition specified in § 25.175 (free return).  
 
   (d) The average gradient of the stick force versus speed curves for each test 
configuration may not be less than one pound for each 6 knots for the appropriate speed ranges 
specified in § 25.175.  Therefore, after each curve is drawn, draw a straight line from the 
intersection of the curve and the required maximum speed to the trim point.  Then draw a 
straight line from the intersection of the curve and the required minimum speed to the trim point.  
The slope of these lines must be at least one pound for each 6 knots.  The local slope of the curve 
must remain stable for this range.  
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  (2) Section 25.175, Demonstration of Static Longitudinal Stability, specifically defines 
the flight conditions, airplane configurations, trim speed, test speed ranges, and power or thrust 
settings to be used in demonstrating compliance with the longitudinal stability requirements. 
 
 b. Procedures. 
 
  (1) Stabilized Method.   
 
   (a) For the demonstration of static longitudinal stability, the airplane should be 
trimmed in smooth air at the conditions required by the regulation.  Aft c.g. loadings are 
generally most critical.  After stabilizing at the trim speed, apply a light pull force and stabilize 
at a slower speed.  Continue this process in increments, the size of the speed increment being 
dependent on the speed spread being investigated, until reaching the minimum speed for steady, 
unstalled flight or the minimum speed appropriate for the configuration.  A continuous pull force 
should be used from the trim speed on each series of test points to eliminate hysteresis effects.  
At the end of the required speed range, the force should be gradually relaxed to allow the 
airplane to return slowly toward the trim speed and zero stick force.  Depending on the amount 
of friction in the control system, the eventual speed at which the airplane stabilizes will normally 
be less than the original trim speed.  The new speed, called the free return speed, must meet the 
requirements of § 25.173.  
 
   (b) Starting again at the trim speed, and with the airplane in trim, push forces 
should be gradually applied and gradually relaxed in the same manner as described in paragraph 
(a), above.  
 
   (c) The above techniques result in several problems in practice.  One effect of 
changing airspeed is a change of altitude, with a corresponding change in Mach number and 
power or thrust output.  Consequently, a reasonably small altitude band, limited to +3,000 ft., 
should be used for the complete maneuver.  If this altitude band is exceeded, regain the original 
trim altitude by changing the power or thrust setting and flap and gear position as necessary, but 
without changing the trim setting.  Then continue the push or pull maneuver in the original 
configuration.  Testing somewhat beyond the required speed limits in each direction assures that 
the resulting data covers at least the required speed ranges.  It will also be noted in testing that 
while holding force constant at each data point, the airspeed and instantaneous vertical speed 
vary in a cyclic manner.  This is due to the long period (phugoid) oscillation.  Care should be 
exercised in defining and evaluating the data point, since it may be biased by this phugoid 
oscillation.  Averaging these oscillating speeds at each data point is an acceptable method of 
eliminating this effect.  Extremely smooth air improves the quality of the test data.  In-bay and 
cross-bay wing fuel shift is another issue experienced in some airplanes.  In-bay fuel shift occurs 
rapidly with pitch angle; therefore, consideration should be given to testing with fuel loadings 
that provide the maximum shift since it is generally destabilizing.  Slower, cross-bay fuel shift, 
or burn from an aft tank, can influence the measured stability but usually only because of the 
time required to obtain the data points.  This testing induced instability should be removed from 
the data before evaluating the slope of the stick force versus speed.  
 
  (2) Acceleration-Deceleration Method.   
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   (a) Trim at the desired airspeed and note the power or thrust setting.  Without 
changing pitch trim, increase power or thrust to accelerate the airplane to the extreme speed of 
the desired data band.  Using elevator control as needed, maintain approximately a constant 
altitude.  Then, without changing pitch trim, quickly reset the power or thrust to the original 
power setting and allow the airplane to decelerate at a constant altitude back to the original trim 
speed.  Obtain longitudinal static stability data during the deceleration to trim speed with the 
power and the pitch trim position the same as the original trim data point.   
 
   (b) Obtain data below the trim speed in a similar manner, by reducing power or 
thrust to decelerate the airplane to the lowest speed in the data band.  Using elevator control as 
needed without changing pitch trim, maintain approximately a constant altitude.  Then, without 
changing pitch trim, quickly reset the power to the original power setting, and record the data 
during the level flight acceleration back to trim speed.  If, because of thrust/drag relationships, 
the airplane has difficulty returning to the trim conditions, small altitude changes within ± 2,000 
feet can also be used to coax an airplane back to trim speed.  Level flight is preferred, if possible.  
Obtain speed and elevator stick force data approximately every 10 knots of speed change. 
 
  (3) The resulting pilot longitudinal force test points should be plotted versus airspeed 
to show the positive stable gradient of static longitudinal stability and that there are no “local” 
reversals in the stick force vs. airspeed relationship over the range of airspeeds tested.  This plot 
should also show the initial trim point and the two return-to-trim points to evaluate the return-to-
trim characteristics (see Figure 26-1). 
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Figure 26-1.  Longitudinal Static Stability 

 

 
  
 (4) Examples of “local reversals” are given in Figure 26-2.  Curves A and C depict a local 
gradient reversal within the required speed range.  Even though it might be argued that the 
“average gradient” meets the one pound in six knots criterion, the gradient reversals would 
render these characteristics unacceptable.  Curve B depicts a situation in which the gradient 
reverses, but only outside the required speed range.  In addition, Curve B demonstrates a 
situation in which the local gradient does not always meet the required one pound in six knots, 
even though the average gradient does. 
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Figure 26-2.  Local Reversal 
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27. Static Directional and Lateral Stability - § 25.177.  
 
 a. Explanation. 
 
  (l) Static Directional Stability.  Positive static directional stability is defined as the 
tendency to recover from a skid with the rudder free.  Prior to Amendment 25-72, a separate 
demonstration of positive static directional stability was required by § 25.177(a) for any landing 
gear and flap position and symmetrical power or thrust condition at speeds from 1.13 VSR1 up to 
VFE, VLE, or VFC/MFC, as appropriate for the airplane configuration.  
 
  (2) Static Lateral Stability.  Positive static lateral stability is defined as the tendency to 
raise the low wing in a sideslip with hands off the roll controls.  Prior to Amendment 25-72, a 
separate demonstration was required by § 25.177(b) to show that static lateral stability was not 
negative in any landing gear and flap position and symmetrical power or thrust condition at 
speeds from 1.13 VSR1 to VFE, VLE, or VMO/MMO, as appropriate for the airplane configuration.  
At speeds from VMO/MMO to VFC/MFC, negative static lateral stability was permitted by 
§ 25.177(b), if the divergence is:  
 
   (a) Gradual;  
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   (b) Easily recognizable by the pilot; and  
 
   (c) Easily controllable by the pilot. 
 
  (3) Steady Straight Sideslips. 
 
   (a) Section 25.177(c) requires, in steady, straight sideslips throughout the range of 
sideslip angles appropriate to the operation of the airplane, that the aileron and rudder control 
movements and forces be proportional to the angle of sideslip.  Also, the factor of 
proportionality must lie between limits found necessary for safe operation.  Section 25.177(c) 
also states that that the range of sideslip angles evaluated must include those sideslip angles 
resulting from the lesser of:  (1) one-half of the available rudder control input; and (2) a rudder 
control force of 180 pounds.  This means that if using one-half of the available rudder control 
input takes less than 180 pounds of force, then compliance must be based on using one-half of 
the available rudder control input.  If application of 180 pounds of rudder control force results in 
using less than one-half of the available rudder control input, then compliance must be based on 
applying 180 pounds of rudder control force.  By cross-reference to § 25.177(a), § 25.177(c) 
requires that these steady, straight sideslip criteria must be met for all landing gear and flap 
positions and symmetrical power  or thrust conditions at speeds from 1.13 VSR1 to VFE, VLE, or 
VFC/MFC, as appropriate for the configuration. 
 
   (b) Experience has shown that an acceptable method for determining the 
appropriate sideslip angle for the operation of a transport category airplane is provided by the 
following equation: 
 
 ß = arc sin (30/V) 
 
 where ß = Sideslip angle, and 
   V = Airspeed (KTAS) 
 
Recognizing that smaller sideslip angles are appropriate as speed is increased, this equation 
provides sideslip angle as a function of airspeed.  The equation is based on the theoretical 
sideslip value for a 30-knot crosswind, but has been shown to conservatively represent (i.e., 
exceed) the sideslip angles achieved in maximum crosswind takeoffs and landings and minimum 
static and dynamic control speed testing for a variety of transport category airplanes.  Experience 
has also shown that a maximum sideslip angle of 15 degrees is generally appropriate for most 
transport category airplanes even though the equation above may provide a higher sideslip angle.  
However, limiting the maximum sideslip angle to 15 degrees may not be appropriate for 
airplanes with low approach speeds or high crosswind capability.   
 
   (c) A lower sideslip angle than that provided in paragraph 27a(3)(b) may be used 
if it is substantiated that the lower value conservatively covers all crosswind conditions, engine 
failure scenarios, and other conditions where sideslip may be experienced within the approved 
operating envelope.  Conversely, a higher value should be used for airplanes where test evidence 
indicates that a higher value would be appropriate to the operation of the airplane. 
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   (d) For the purpose of showing compliance with the requirement out to sideslip 
angles associated with the lesser of:  (1) one-half of the available rudder control input; and (2) a 
rudder control force of 180 pounds, there is no need to consider a rudder control input beyond 
that corresponding to full available rudder surface travel.  Some rudder control system designs 
may limit the available rudder surface deflection such that full deflection for the particular flight 
condition, or the maximum commanded sideslip angle for the flight condition, is reached before 
the rudder control reaches one-half of its available travel.  In such cases, further rudder control 
input is unnecessary as it would not result in a higher sideslip angle, and therefore would not 
affect compliance with the rule. 
 
  (4) Full Rudder Sideslips. 
 
   (a) At sideslip angles greater than those appropriate for normal operation of the 
airplane, up to the sideslip angle at which full rudder control input is used or a rudder control 
force of 180 pounds is obtained, § 25.177(d) requires that the rudder pedal control may not 
reverse and increased rudder deflection must be needed for  increased angles of sideslip.  The 
goals of this higher-than-normal sideslip angle test are to show that at full rudder control input, 
or at maximum expected pilot effort: (1) the rudder control force does not reverse, and (2) 
increased rudder deflection must be needed for increased angles of sideslip, thus demonstrating 
freedom from rudder lock or fin stall, and adequate directional stability for maneuvers involving 
large rudder inputs.   
 
   (b) Compliance with this requirement should be shown using straight, steady 
sideslips.  However, if full lateral control input is reached before full rudder control travel or a 
rudder control force of 180 pounds is reached, the maneuver may be continued in a non-steady 
heading (i.e., rolling and yawing) maneuver.  Care should be taken to prevent excessive bank 
angles that may occur during this maneuver. 
 
   (c)  Section 25.177(d) states that the criteria listed in paragraph 27a(4)(a) must be 
met at all approved landing gear and flap positions for the range of operating speeds and power 
conditions appropriate to each landing gear and flap position with all engines operating.  The 
range of operating speeds and power conditions appropriate to each landing gear and flap 
position with all engines operating should be consistent with the following:  
 
    1   For takeoff configurations, speeds from V2+xx (airspeed approved for all-
engines-operating initial climb) to VFE or VLE, as appropriate, and takeoff power/thrust; 
 
    2   For flaps up configurations, speeds from 1.23 VSR to VLE or VMO/MMO, as 
appropriate, and power from idle to maximum continuous power/thrust;  
 
    3   For approach configurations, speeds from 1.23 VSR to VFE or VLE, as 
appropriate, and power from idle to go-around power/thrust; and 
 
    4   For landing configurations, speeds from VREF-5 knots to VFE or VLE, as 
appropriate, with power from idle to go-around power/thrust at speeds from VREF to VFE/VLE, 
and idle power at VREF-5 knots (to cover the landing flare). 
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 b. Procedures.  The test conditions should include each flap and landing gear configuration 
as described in paragraphs 27a(1) through 27a(4) at an altitude appropriate to each configuration.  
 
  
  (1) Basic Tests for Static Directional and Lateral Stability. 
 
   (a) Static Directional Stability.  To check static directional stability with the 
airplane in the desired configuration and stabilized at the trim speed, the airplane is slowly 
yawed in both directions while maintaining the wings level with the roll controls.  When the 
rudder is released, the airplane should tend to return to straight flight.  
 
   (b) Static Lateral Stability.  To check lateral stability with a particular 
configuration and trim speed, conduct steady, straight sideslips at the trim speed by maintaining 
the airplane heading with rudder and banking with the roll controls.  When the roll controls are 
released, with the rudder held fixed, the low wing should tend to return to level.  Initial bank 
angle should be appropriate to type; however, it is recommended that it should not be less than 
10 degrees or that necessary to maintain the steady, straight sideslip with one-half rudder 
deflection, whichever occurs first.  Roll control centering by the pilot should not be permitted 
during this evaluation.  The intent of this testing is to evaluate the short-term response of the 
airplane; therefore long-term effects, such as those due to spanwise fuel movement, need not be 
taken into account. 
 
  (2)  Steady, Straight Sideslips.  Steady, straight sideslips should be conducted in each 
direction to show that the aileron and rudder control movements and forces are substantially 
proportional to the angle of sideslip in a stable sense, and that the factor of proportionality is 
within the limits found necessary for safe operation.  These tests should be conducted at 
progressively greater sideslip angles up to the sideslip angle appropriate to the operation of the 
airplane (see paragraph 27a(3)(b)) or the sideslip angle associated with one-half of the available 
rudder control input (as limited by a rudder control force of 180 pounds), whichever is greater.    
 
   (a)  When determining the rudder and aileron control forces, the controls should be 
relaxed at each point to find the minimum force needed to maintain the control surface 
deflection.  If excessive friction is present, the resulting low forces will indicate the airplane does 
not have acceptable stability characteristics.  
 
   (b)  In lieu of conducting each of the separate qualitative tests described in 
paragraph 27b(1), the applicant may use recorded quantitative data showing aileron and rudder 
control force and position versus sideslip (left and right) to the appropriate limits in the steady 
heading sideslips conducted to show compliance with § 25.177(c).  If the control force and 
position versus sideslip indicates positive dihedral effect and positive directional stability, 
compliance with § 25.177(a) and (b) will have been successfully demonstrated.  
 
  (3) Full Rudder Sideslips.  
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   (a) Rudder lock is that condition where the rudder over-balances aerodynamically 
and either deflects fully with no additional pilot input or does not tend to return to neutral when 
the pilot input is released.  It is indicated by a reversal in the rudder control force as sideslip 
angle is increased.  Full rudder sideslips are conducted to determine the rudder control forces and 
deflections out to sideslip angles associated with full rudder control input (or as limited by a 
rudder control force of 180 pounds) to investigate the potential for rudder lock and lack of 
directional stability.  
 
   (b) To check for positive directional stability and for the absence of rudder lock,  
conduct steady heading sideslips at increasing sideslip angles until obtaining full rudder control 
input or a rudder control force of 180 pounds.  If full lateral control is reached before reaching 
the rudder control limit or 180 pounds of rudder control force, continue the test to the rudder 
limiting condition in a non-steady heading sideslip maneuver.  
 
  (4) Control Limits.  The control limits approved for the airplane should not be 
exceeded when conducting the flight tests required by § 25.177. 
 
  (5)  Flight Test Safety Concerns.  In planning for and conducting the full rudder 
sideslips, items relevant to flight test safety should be considered, including:  
 
   (a) Inadvertent stalls,  
 
   (b)  Effects of sideslip on stall protection systems,  
 
   (c)  Actuation of stick pusher, including the effects of sideslip on angle-of-attack 
sensor vanes,  
 
   (d)  Heavy buffet,  
 
   (e)  Exceeding flap loads or other structural limits,  
 
   (f) Extreme bank angles,  
 
   (g)  Propulsion system behavior (e.g., propeller stress, fuel and oil supply, and inlet 
stability),  
 
   (h)  Minimum altitude for recovery,  
 
   (i)  Resulting roll rates when the aileron limit is exceeded, and 
 
   (j)  Position errors and effects on electronic or augmented flight control systems, 
especially when using the airplane’s production airspeed system. 
 
   (k) Rudder loads, particularly those that may occur with dynamic rudder inputs. 
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28. Dynamic Stability - § 25.181.  
 
 a. Explanation.  
 
  (1) The dynamic stability tests described in this section should be conducted over the 
speed range of 1.13 VSR to VFE, VLE or VFC/MFC, as appropriate. 
 
  (2) Dynamic Longitudinal Stability.  
 
   (a) The short period oscillation is the first oscillation the pilot sees after disturbing 
the airplane from its trim condition with the pitch control (as opposed to the long period 
(phugoid)).  Care should be taken that the control movement used to excite the motion is not too 
abrupt.  
 
   (b) Heavily damped means that the oscillation has decreased to 1/10 the initial 
amplitude within approximately two cycles after completion of the control input.  
 
   (c) Short period oscillations must be heavily damped, both with controls free and 
controls fixed.  
 
  (3) Dynamic Lateral-Directional Stability.  The evaluation of the dynamic lateral-
directional stability should include any combined lateral-directional oscillation (“Dutch roll”) 
occurring over the speed range appropriate to the airplane configuration.  This oscillation must 
be positively damped with controls free and must be controllable with normal use of the primary 
controls without requiring exceptional piloting skill.  
 
 b. Procedures.  
 
  (1) Dynamic Longitudinal Stability.  
 
   (a) The test for longitudinal dynamic stability is accomplished by a rapid 
movement or pulse of the longitudinal control in a nose up and nose down direction at a rate and 
degree necessary to obtain a short period pitch response from the airplane.  
 
   (b) Dynamic longitudinal stability should be checked at a sufficient number of 
points in each configuration to assure compliance at all operational speeds.  
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  (2) Dynamic Lateral-Directional Stability.  
 
   (a) A typical test for lateral-directional dynamic stability is accomplished by a 
rudder doublet input at a rate and amplitude that will excite the lateral-directional response (i.e., 
Dutch roll).  The control input should be in phase with the airplane’s oscillatory response. 
 
   (b) Dynamic lateral-directional stability should be checked under all conditions 
and configurations.  If critical, special emphasis should be placed on adverse wing fuel loading 
conditions.  
 
  (3) Airplanes Equipped with Stability Augmentation Systems (SAS).  In the event a 
SAS is required for the airplane to show compliance with § 25.181(a) or (b), it must meet the 
requirements of §§ 25.671 and 25.672.  Additionally: 
 
   (a) If the airplane is equipped with only one SAS (i.e., a single strand system), in 
accordance with § 25.672, compliance with the dynamic stability requirements of § 25.181(a) or 
(b), as applicable, must be shown throughout the normal operating flight envelope to be 
certificated with the SAS operating, and in a reduced, practical operating flight envelope that 
will permit continued safe flight and landing with the SAS inoperative. 
 
   (b) If the airplane is equipped with more than one SAS, the resulting effects of 
SAS failure should be considered when determining whether or not the primary and any 
redundant SAS should be operating simultaneously for showing compliance with the dynamic 
stability requirements of § 25.181(a) or (b).  If the primary and redundant SAS are dissimilar, the 
functional capability (i.e., control authority) of the redundant SAS should be considered with 
regard to restricting the operating envelope after failure of the primary SAS.  At the applicant’s 
option, however, compliance with § 25.181(a) or (b) may still be demonstrated to a reduced 
flight envelope with no SAS operating as described in paragraph 28b(3)(a), above. 
 
   (c) Regardless of the SAS redundancy, the airplane should be safely controllable 
at the point of system failure or malfunction anywhere in the approved operating flight envelope 
of the airplane.  Accordingly, it should be demonstrated that the airplane remains controllable 
during transition from the operating SAS to any redundant SAS, and during transition from 
anywhere in the normal operating envelope to the reduced practical operating envelope of 
§ 25.672(c), if applicable.  Airplane controllability should be demonstrated to meet the following 
levels as defined by the FAA HQRM.  (The FAA HQRM is described in Appendix 5 of this 
AC.) 
 
    1 In the normal operating flight envelope with the SAS operating, the 
handling qualities should be “satisfactory” (SAT) as defined by the FAA HQRM. 
 
    2 At the point of SAS failure in the normal operating envelope, the airplane 
should be “controllable” (CON), as defined by the FAA HQRM, during the short term transitory 
period required to attain a speed and configuration that will permit compliance with paragraph 3, 
below. 
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    3 During transition from the primary SAS to a redundant SAS, or from the 
normal operating envelope to a reduced, practical operating envelope (where applicable), the 
handling qualities should be “adequate” (ADQ) as defined by the HQRM. 
 
    4 In the reduced, practical operating flight envelope that will permit 
continued safe flight and landing, the handling qualities should be “satisfactory” (SAT) as 
defined by the HQRM. 
 
 

Section 6.  Stalls 
 
 
29. Stall Testing. 
 
 a. The applicable Code of Federal Regulations (CFR) are as follows: 
 
  Section 25.21(c)               Proof of Compliance 
 
  Section 25.103                 Stall Speed 
 
  Section 25.143                 Controllability and Maneuverability (General) 
 
  Section 25.201                 Stall Demonstration 
 
  Section 25.203                 Stall Characteristics 
 
  Section 25.207                 Stall Warning 
 
 b. Explanation. 
 
  (1) The purpose of stall testing is threefold: 
 
   (a) To define the reference stall speeds and how they vary with weight, altitude, 
and airplane configuration. 
 
   (b) To demonstrate that handling qualities are adequate to allow a safe recovery 
from the highest angle-of-attack attainable in normal flight (stall characteristics). 
 
   (c) To determine that there is adequate pre-stall warning (either aerodynamic or 
artificial) to allow the pilot time to recover from any probable high angle-of-attack condition 
without inadvertently stalling the airplane. 
 
  (2) During this testing, the angle-of-attack should be increased at least to the point 
where the behavior of the airplane gives the pilot a clear and distinctive indication through the 
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inherent flight characteristics or the characteristics resulting from the operation of a stall 
identification device (e.g., a stick pusher) that the airplane is stalled. 
 
 c. Stall Demonstration - § 25.201. 
 
  (1) The airplane is considered to be fully stalled when any one or a combination of the 
characteristics listed below occurs to give the pilot a clear and distinctive indication to cease any 
further increase in angle-of-attack, at which time recovery should be initiated using normal 
techniques.   
 
   (a) The pitch control reaches the aft stop and is held full aft for two seconds, or 
until the pitch attitude stops increasing, whichever occurs later.  In the case of turning flight 
stalls, recovery may be initiated once the pitch control reaches the aft stop when accompanied by 
a rolling motion that is not immediately controllable (provided the rolling motion complies with 
§ 25.203(c)). 
 
   (b) An uncommanded, distinctive, and easily recognizable nose down pitch that 
cannot be readily arrested.  This nose down pitch may be accompanied by a rolling motion that is 
not immediately controllable, provided that the rolling motion complies with § 25.203(b) or (c), 
as appropriate. 
 
   (c) The airplane demonstrates an unmistakable, inherent aerodynamic warning of 
a magnitude and severity that is a strong and effective deterrent to further speed reduction.  This 
deterrent level of aerodynamic warning (i.e., buffet) should be of a much greater magnitude than 
the initial buffet ordinarily associated with stall warning.  An example is a large transport 
airplane that exhibits “deterrent buffet” with flaps up and is characterized by an intensity that 
inhibits reading cockpit instruments and would require a strong determined effort by the pilot to 
increase the angle-of-attack any further. 
 
   (d) The activation point of a stall identification device that provides one of the 
characteristics listed above.  See paragraph 228 of this AC for additional guidance material on 
demonstrating compliance with the regulatory requirements of part 25 for stall identification 
systems. 
 
  (2) It should be recognized that the point at which the airplane is considered stalled 
may vary, depending on the airplane configuration (e.g., flaps, gear, c.g., and gross weight).  In 
any case, the angle-of-attack should be increased until one or more of these characteristics is 
reached for all likely combinations of variables. 
 
 d. Stall Speeds. 
 
  (1) Background.  Since many of the regulations pertaining to performance and 
handling qualities specify trim speeds and other variables that are functions of stall speeds, it is 
desirable to accomplish the stall speed testing early in the program, so the data are available for 
subsequent testing.  Because of this interrelationship between the stall speeds and other critical 
performance parameters, it is essential that accurate measurement methods be used.  Most 
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standard airplane pitot-static systems are unacceptable for stall speed determination.  These tests 
require the use of properly calibrated instruments and usually require a separate test airspeed 
system. 
 
  (2) Configuration. 
 
   (a) Stall speeds should be determined for all aerodynamic configurations to be 
certificated for use in the takeoff, en route, approach, and landing configurations. 
 
   (b) The c.g. positions to be used should be those that result in the highest stall 
speeds for each weight (forward c.g. in most cases). 
 
   (c) Sufficient testing should be conducted to determine the effects of weight on 
stall speed.  Altitude effects (compressibility, Reynolds Number) may also be considered if 
credit for variations in these parameters is sought by the applicant.  If stall speeds are not to be 
defined as a function of altitude, then all stall speed testing should be conducted at a nominal 
altitude no lower than 1,500 ft. above the maximum approved takeoff and landing altitude.  (See 
paragraph 29d(5)(g).) 
 
  (3) Procedures. 
 
   (a) The airplane should be trimmed for hands-off flight at a speed 13 percent to 30 
percent above the anticipated VSR, with the engines at idle and the airplane in the configuration 
for which the stall speed is being determined.  Then, using only the primary longitudinal control 
for speed reduction, maintain a constant deceleration (entry rate) until the airplane is stalled, as 
defined in § 25.201(d) and paragraph 29c(1) of this AC.  Following the stall, engine power or 
thrust may be used as desired to expedite recovery.   
 
   (b) A sufficient number of stalls (normally four to eight) should be accomplished 
at each critical combination of weight, altitude, c.g., and external configuration.  The intent is to 
obtain enough data to determine the stall speed at an entry rate not exceeding 1.0 knot/second.  
During the maneuver for determining stall speeds, the flight controls should be operated 
smoothly in order to achieve good data quality rather than trying to maintain a constant entry rate 
because experience has shown that adjusting the flight controls to maintain a constant entry rate 
leads to fluctuations in load factor and significant data scatter.   
   
   (c) During the stall speed testing, the stall characteristics of the airplane must also 
satisfy the requirements of § 25.203(a) and (b). 
 
   (d) For airplanes that have stall identification devices for which the angle-of-
attack for activation is biased by angle-of-attack rate, some additional considerations are 
necessary.  The stall speeds are normalized against an average airspeed deceleration rate, as 
described in paragraph 29d(5)(e).  However, stall identification systems generally activate at a 
specific angle-of-attack, biased by an instantaneous angle-of-attack rate.  Therefore, longitudinal 
control manipulation by the pilot during the stall maneuver, close to the stall identification 
system activation point, can advance or delay its activation without appreciably affecting the 
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average stall entry airspeed rate.  To minimize scatter in the stall speed versus entry rate data, the 
pilot should attempt to maintain a stable angle-of-attack rate or pitch rate (not necessarily a fixed 
airspeed deceleration rate), until the stall identification system activates.  The resulting time-
history of angle-of-attack data should be smooth and without discontinuities.  A cross plot of 
airspeed deceleration rate, as defined in paragraph 29d(5)(e), versus angle-of-attack rate for all 
related test points, will show the general trend of this relationship for each flap setting.  Any 
points that do not follow this general trend should not be used in establishing the stall speed. 
 
  (4) Thrust Effects on Stall Speed. 
 
   (a) Stall speeds are typically determined with the thrust levers at idle; however, it 
is necessary to verify by test or analysis that engine idle thrust does not result in appreciably 
lower stall speeds than would be obtained at zero thrust.  Prior to Amendment 25-108, a negative 
idle thrust at the stall, which slightly increases stall speeds, was considered acceptable, but 
applicants were not required to base stall speeds on idle thrust.  With the adoption of 
Amendment 25-108, it became a requirement to base stall speeds on idle thrust, except where 
that thrust level results in a significant decrease in stall speeds.  If idle thrust results in a 
significant decrease in stall speeds, then stall speeds cannot be based on more than zero thrust. 
 
   (b) To determine whether thrust effects on stall speed are significant, at least three 
stalls should be conducted at one flap setting, with thrust set to approximately the value required 
to maintain level flight at 1.5 VSR in the selected configuration. 
 
   (c) These data may then be extrapolated to a zero thrust condition to determine the 
effects of idle thrust on stall speeds (see Figure 29-1).  If the difference between idle thrust and 
zero thrust stall speed is 0.5 knots or less, the effect may be considered insignificant. 

 
Figure 29-1.  Thrust Effect On Stall Speed 
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   (d) The effects of engine power on stall speeds for a turbopropeller airplane can 
be evaluated in a similar manner.  Stall speed flight tests should be accomplished with engines 
idling and the propellers in the takeoff position.  Engine torque, engine r.p.m., and estimated 
propeller efficiency can be used to predict the thrust associated with this configuration. 
 
  (5) Data Reduction and Presentation.  The following is an example of how the data 
obtained during the stall speed testing may be reduced to standard conditions.  Other methods 
may be found acceptable. 
 
   (a) Record the indicated airspeed from the flight test airspeed system throughout 
the stall, and correct these values to equivalent airspeed.  Also record load factor normal to the 
flight path.  Typically, the load factor data would be obtained from a sufficient number of 
accelerometers capable of resolving the flight path load factor.  It may be possible to obtain 
acceptable data using one accelerometer aligned along the expected 1-g stall pitch angle.  More 
likely, it will take at least two accelerometers, one aligned along the fuselage longitudinal axis 
and one aligned at 90 degrees to that axis, as well as a means to determine the angle between the 
flight path and the fuselage longitudinal axis.  
 
   (b) Calculate the airplane lift coefficient (CL) from the equation given below and 
plot it as a time history throughout the stall maneuver.  
 

   CL  = 
n W

qS
zw  = 

SV

Wn

e

zw
2

37.295
 

 
 Where: nzw = airplane load factor normal to the flight path 
 
   W =  airplane test weight - lbs. 
   q =  dynamic pressure - lbs./ft.2 
   S =  reference wing area - ft.2 

Ve =  knots equivalent airspeed. 
         
   (c) The maximum lift coefficient               is defined as the maximum value of CL 
achieved during the stall test.  Where the time history plot of CL exhibits multiple peak values,                           

(CLMAX)  

             CLMAX  normally corresponds to the first maximum.  However, the peak corresponding to the 
highest CL achieved may be used for             , provided it represents usable lift, meaning that it 
does not occur after deterrent buffet or other stall identification cue (ref. § 25.201(d)).  There 
should also typically be a noticeable break in a plot of the load factor normal to the flight path 
near the point at which             is reached.  The analysis to determine              should disregard 
any transient or dynamic increases in recorded load factor, such as might be generated by abrupt 
control inputs that do not reflect the lift capability of the airplane.  The load factor normal to the 
flight path should be maintained at nominally 1.0 until              is reached.  (See Figure 29-2.)  

CLMAX

CLMAX   CLMAX  

CLMAX  
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Figure 29-2.  CLMAX and Load Factor 

 

 
 
   (d) Correct the             obtained for each stall, if necessary, from the test c.g. 
position to the targeted c.g. position, and for any thrust effects, using the equation:  

CLMAX  

 

   CLMAX =   CLMAX (test c.g. position)[1 + (MAC/lt)(CGstd - CGtest)] - CLT 

Where:  MAC = Wing mean aerodynamic chord length - inches. 
 

    lt =  Effective tail length, measured between the wing 25 percent MAC 
 and the stabilizer 25 percent MAC - inches. 

 

   CGstd =  C.G. position resulting in the highest value of reference stall speed 
 (normally the forward c.g. limit at the pertinent weight) - percent 
 MAC/100. 

 

   CGtest =   Actual test c.g. position - percent MAC/100. 
 

   CLT =    Change in CL due to engine thrust (if effect of idle thrust is greater 
 than 0.5 knots in stall speed). 
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   (e) Determine the stall entry rate, which is defined as the slope of a straight line 
connecting the stall speed and an airspeed 10 percent above the stall speed, for each stall test.  
Because             is relatively insensitive to stall entry rate, a rigorous investigation of entry rate 
effects should not be necessary.   

CLMAX  

 
   (f) For each approved configuration, construct a plot of CLMAX versus weight (see 

Figure 29-3.)   

Figure 29-3.  CLMAX vs Weight and Flap Setting 
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   (g) Flight test safety concerns usually dictate the lowest test altitude for 
determining stall speeds.  The test data should then be expanded to lower altitudes, and hence 
lower Mach numbers, to cover the operational envelope of the airplane.  Since                  usually 
increases as the Mach number is reduced, simple expansion of the flight test data could result in 
extrapolating to a higher             than tested.  The expansion of             versus Mach number data 
is only permitted up to the highest              demonstrated within the range of W/’s tested, unless 
the continuation of the trend of higher              with decreasing Mach number is substantiated 
with other test data.  For example, data obtained at a more aft c.g. position or with power on can 
be used for this purpose if c.g. and thrust effects can be accounted for.  Data from another 
airplane in the same family with the same wing and showing the same general trend of             
versus Mach (e.g., a lighter weight variant) may also be used if shown to be applicable. 

CLMAX  

CLMAX  CLMAX 
CLMAX  

CLMA X  

CLMAX  

 
   (h)  The reference stall speed, VSR, is a calibrated airspeed defined by the applicant.  
VSR may not be less than the 1-g stall speed and is expressed as:   

    
zw

CL

SR n

V
MAXV    
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   Where: VCLMAX =  S))(W)/(C295.37(n
MAX

LZW  +VC.  If the stalling maneuver 

is limited by a device that commands an abrupt nose down 
pitch (e.g., a stick pusher),              may not be less than the 
speed existing at the instant the device operates. 

CLMAX 

 
     VC  = compressibility correction (i.e., the difference between 

equivalent airspeed and calibrated airspeed). 
 
     W  =   airplane weight - lbs. 
 
     nzw  =   airplane load factor normal to the flight path. 
 
        =  value of              corresponding to the chosen weight (see     

  Figure 29-4). 
CLMAX  CLMAX 

 
     S  =  reference wing area - ft.2 
 
   (i) Construct a plot of reference stall speed versus weight for each flap/gear 
configuration.  (See Figure 29-4). 
 

Figure 29-4.  Stall Speed vs Weight and Flap Setting 
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   (j) For airplanes equipped with a device that abruptly pushes the nose down at a 
selected angle-of-attack (e.g., a stick pusher), VSR must not be less than the greater of 2 knots or 
2 percent above the speed at which the device activates (§ 25.103(d)). 
 
   (k) In showing compliance with § 25.103(d) for airplanes equipped a device that 
abruptly pushes the nose down at a selected angle-of-attack (e.g., a stick pusher), the speed at 
which the device operates need not be corrected to 1 g.  Requiring a load factor correction of the 
device activation speed to the 1-g condition would unnecessarily increase the stringency of 
§ 25.103(d).  For example, it would be possible for the device activation speed to be assessed as 
higher than VSR (or at least closer to VSR than would be obtained without correcting to the 1 g 
condition).  Test procedures should be in accordance with paragraph 29d(3)(a) to ensure that no 
abnormal or unusual pilot control input is used to obtain an artificially low speed at which the 
device first activates. 
 
 e. Stall Characteristics - § 25.203. 
 
  (1) Background.  To assure a safe and expeditious recovery from an unintentional stall, 
it should not require any unusual piloting technique to successfully demonstrate compliance with 
§ 25.203, nor should it require exceptional skill or repeated practice by the test pilot.  The 
behavior of the airplane during the stall and recovery must be easily controllable using normally 
expected pilot reactions. 
 
  (2) Configuration. 
 
   (a) Stall characteristics should be investigated with wings level and in a 30-degree 
banked turn, with both power or thrust on and power or thrust off in all configurations approved 
for normal operations. 
 
   (b) The test configurations for stall characteristics should include deployed 
deceleration devices for all flap positions, unless limitations against the use of those devices with 
particular flap positions are imposed.  ‘Deceleration devices’ include spoilers used as airbrakes, 
and thrust reversers approved for inflight use.  Stall demonstrations with deceleration devices 
deployed should normally be carried out with power or thrust off, except where deployment of 
the deceleration devices with power or thrust on would likely occur in normal operations (e.g., 
extended spoilers during landing approach). 
 
   (c) Stall characteristics should be investigated with any systems or devices that 
may alter the stalling behavior of the airplane in their normal functioning mode.  Unless the 
design of the airplane’s automatic flight control system precludes its ability to operate beyond 
the stall warning angle-of-attack, stall characteristics and the adequacy of stall warning should 
be evaluated when the airplane is stalled under the control of the automatic flight control system. 
 
   (d) Power-off stalls should be conducted at flight idle for the appropriate 
configuration.  For propeller-driven airplanes, the propeller should be set in the normal low pitch 
(high r.p.m.) position. 
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   (e) For power-on stalls, power or thrust should be set to the value required to 
maintain level flight at a speed of 1.5 VSR at the maximum landing weight with flaps in the 
approach position, and the landing gear retracted.  The approach flap position referred to is the 
maximum flap deflection used to show compliance with § 25.121(d), which specifies a 
configuration in which the reference stall speed does not exceed 110 percent of the reference 
stall speed for the related landing configuration. 
 
   (f) Stall characteristics testing is normally done at the aft c.g. limit, which is 
typically the most adverse; however, if the stall speed tests at forward c.g. indicate that marginal 
stall recovery characteristics may exist at forward c.g., compliance with § 25.203 should be 
shown for the most critical loading. 
 
   (g) In accordance with § 25.21(c), stalls must be demonstrated up to the maximum 
approved operating altitude to determine if there are any adverse compressibility effects on stall 
characteristics.  These tests should be flown with gear and flaps up at the most adverse c.g. 
Power or thrust may be set, as required, to maintain approximately level flight and a 1 
knot/second deceleration.  A slight descent rate is permissible as long as the stall occurs at 
approximately the maximum approved altitude.  Characteristics should be checked during a 
wings level stall and in a 30-degree banked turn. 
 
   (h) For abnormal aerodynamic configurations covered by AFM procedures, high 
angle-of-attack characteristics should be evaluated down to the speed reached one second after 
stall warning in a one knot/second deceleration with the wings level and at idle power or thrust.  
If there are no adverse characteristics and there is adequate controllability, it is not necessary to 
stall the airplane.  Adequate controllability means that it is possible to produce and to correct 
pitch, roll, and yaw by unreversed use of the flight controls, and that there are no uncommanded 
airplane motions due to aerodynamic flow breakdown.  The applicant should also demonstrate 
that the airplane is safely controllable and maneuverable when flown at the recommended 
operating speed. 
 
   (i) Stall characteristics should also be demonstrated with the maximum allowable 
asymmetric fuel loading.  Requirements are as specified in § 25.203(a) and (c). 
 
  (3) Procedures. 
 
   (a) The airplane should be trimmed for hands-off flight at a speed 13 percent to 30 
percent above the reference stall speed, with the appropriate power or thrust setting and 
configuration.  Then, using only the primary longitudinal control, establish and maintain a 
deceleration (stall entry rate) consistent with that specified in § 25.201(c)(1) or (c)(2), as 
appropriate, until the airplane is stalled.  Both power/thrust and pilot selectable trim should 
remain constant throughout the stall and recovery (to where the angle-of-attack has decreased to 
the point of no stall warning).   
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   (b) The same trim reference (for example, 1.23 VSR) should be used for both the 
stall speeds and characteristics testing.  For all stall testing, the trim speed is based on the stall 
speeds provided in the AFM. 
 
   (c) During the approach to the stall, the longitudinal control pull force should 
increase continuously as speed is reduced from the trimmed speed to the onset of stall warning.  
Below that speed some reduction in longitudinal control force is acceptable, provided it is not 
sudden or excessive. 
 
   (d) Section 25.203(b) states that “the roll occurring between the stall and the 
completion of the recovery may not exceed approximately 20 degrees” for level wing stalls.  In 
level wing stalls the bank angle may exceed 20 degrees occasionally, provided that lateral 
control is effective during recovery. 
 
   (e) Section 25.203(c) requires the action of the airplane, following the 30 degrees 
bank turning stalls, “not be so violent or extreme...” such that a prompt recovery would be 
difficult and require more than normal piloting skill.  The maximum bank angle that occurs 
during the recovery should not exceed approximately 60 degrees in the original direction of the 
turn, or 30 degrees in the opposite direction. 
 
   (f)  The intent of evaluating the 3 knot per second deceleration rate required under 
§ 25.201(c)(2) is to demonstrate safe characteristics at higher rates of increase in angle-of-attack 
than are obtained from the 1 knot per second stalls.  The specified airspeed deceleration rate, and 
associated angle-of-attack rate, should be maintained up to the point at which the airplane stalls.  
The maximum bank angle that occurs during the recovery should not exceed approximately 90 
degrees in the original direction of the turn, or 60 degrees in the opposite direction. 
 
   (g)  For those airplanes where stall is defined by full nose-up longitudinal control 
for both forward and aft c.g., the time at full aft stick during characteristics testing should be not 
less than that used for stall speed determination.  For turning flight stalls, however, recovery may 
be initiated once the pitch control reaches the aft stop when accompanied by a rolling motion 
that is not immediately controllable (provided the rolling motion complies with § 25.203(c)). 
 
   (h)  As required by § 25.203(a), normal use of the lateral control must produce (or 
correct) a roll, and normal use of the directional control must produce (or correct) a yaw in the 
applied direction up to the point where the airplane is considered stalled.  It must be possible to 
prevent or recover from a stall by normal use of the controls. 
 
   (i) If wind tunnel tests have indicated an airplane may be susceptible to deep stall 
penetration (i.e., that area beyond the stall angle-of-attack from which recovery may be difficult 
or impossible), substantiation should be provided that there is adequate recovery control 
available at, and sufficiently beyond, the stall angle-of-attack. 
 
 f. Stall Warning - § 25.207. 
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  (1) Explanation.  The purpose of these stall warning requirements is to provide an 
adequate spread between warning and stall to allow the pilot time to recover without 
inadvertently stalling the airplane. 
 
  (2) Background.  To be acceptable, a stall warning must have the following features: 
 
   (a) Distinctiveness.  The stall warning indication must be clear and distinct to a 
degree that will ensure positive pilot recognition of an impending stall. 
 
   (b) Timeliness.  For one knot per second entry rate stalls, the stall warning must 
begin at a speed, VSW, not less than five knots or five percent (whichever is greater) above the 
speed at which the stall is identified in accordance with § 25.201(d).  For straight flight stalls, at 
idle power or thrust and with the c.g. at the position specified in § 25.103(b)(5), the stall warning 
must begin at a speed not less than three knots or three percent (whichever is greater) above the 
reference stall speed.  These speed margins should be in terms of the same units of measurement 
as VSR (i.e., calibrated airspeed). 
 
   (c) Consistency.  The stall warning should be reliable and repeatable.  The 
warning must occur with flaps and gear in all normally used positions in both straight and 
turning flight (§ 25.207(a)) and must continue throughout the stall demonstration until the angle-
of-attack is reduced to approximately that at which the stall warning was initiated (§ 25.207(c)).  
The warning may be furnished naturally through the inherent aerodynamic characteristics of the 
airplane, or artificially by a system designed for this purpose.  If artificial stall warning is 
provided for any airplane configuration, it must be provided for all configurations (§ 25.207(b)). 
 
   (d) An artificial stall warning indication that is a solely visual device which 
requires attention in the cockpit, inhibits cockpit conversation or, in the event of malfunction, 
causes distraction that would interfere with safe operation of the airplane, is not acceptable. 
 
   (e) For airplanes that use artificial stall warning systems, paragraph 228 of this 
AC presents guidance material for demonstrating compliance with the regulatory requirements of 
part 25. 
 
   (f) If the stall warning required by § 25.207 is provided by an artificial stall 
warning system (e.g., a stick shaker), the effect of production tolerances on the stall warning 
system should be considered when evaluating the stall warning margin required by § 25.207(c) 
through (f) and the maneuver capabilities required by § 25.143(h).   
 
    1 The stall warning margin required by § 25.207(c) through (f) should be 
available with the stall warning system set to the most critical setting expected in production.  
Unless another setting would provide a lesser margin, the stall warning system should be 
operating at its high angle-of-attack limit.  For airplanes where VSR is set by a device that 
abruptly pushes the nose down at a selected angle-of-attack (e.g., a stick pusher), the stall 
warning margin may be evaluated with both the stall warning and stall identification (e.g., stick 
pusher) systems at their nominal angle-of-attack settings unless a lesser margin can result from 
the various system tolerances.  
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    2 The maneuver capabilities required by § 25.143(h) should be available 
assuming the stall warning system is operating on its nominal setting.  When the stall warning 
system is operating at its low angle-of-attack limit, the maneuver capabilities should not be 
reduced by more than 2 degrees of bank angle from those specified in § 25.143(h).  A flight test, 
an acceptable analysis, or simulation can be used to make this assessment. 
 
    3 The stall warning margin and maneuver capabilities may be demonstrated 
by flight testing at the most critical settings specified above for the stall warning and, if so 
equipped, stall identification systems.  Alternatively, compliance may be shown by applying 
adjustments to flight test data obtained at a different system setting if an acceptable method is 
used that takes into account all of the relevant variables.  
 
  (3) Procedures.  Stall warning tests are normally conducted in conjunction with the 
stall testing required by § 25.103 (stall speeds), § 25.201 (stall demonstration), and § 25.203 
(stall characteristics), including consideration of the prescribed bank angles, power or thrust 
settings, and c.g. position.  The pilot technique in stalling the airplane should be consistent 
between the onset of stall warning and the point at which the stall is identified.  That is, there 
should not be any deliberate attempt to reduce the load factor, change the deceleration, or use 
any other means to increase the stall warning margin.  In addition, if the stall warning margin 
may be affected by a system (e.g., a stall warning or stick pusher system that modifies the stall 
warning or stall identification speed as a function of power or thrust, bank angle, angle-of-attack 
rate, etc.), compliance with § 25.207(c) should be demonstrated at the most critical conditions in 
terms of stall warning margin.  However, for this case, bank angles greater than 40 degrees and 
power or thrust exceeding maximum continuous power or thrust need not be demonstrated.  If 
the effect of the stall identification or stall warning system compensation is to increase the stall 
warning margin relative to the nominal values demonstrated during the testing required by 
§§ 25.103, 25.201, and 25.203, these additional stall warning margin demonstrations need not be 
done. 
 
  (4) Data Acquisition and Reduction.  The stall warning speed and type and quality of 
warning should be noted.  To determine if the required margin exits, compare the speed at which 
acceptable stall warning begins with (1) the stall identification speed, and (2) VSR (for the 
conditions under which VSR is defined).  The stall warning margin comparisons should be made 
at a constant 1-g load factor when showing compliance with § 25.207(d). 
 
 g. Accelerated Stall Warning. 
 
  (1) Explanation.  Section 25.207(f) requires that, in slow-down turns with at least a 
1.5g load factor normal to the flight path and an airspeed deceleration rate greater than 2 knots 
per second, sufficient stall warning is provided to prevent stalling when the pilot takes recovery 
action not less than one second after recognition of stall warning.  The purpose of the 
requirement is to ensure that adequate stall warning exists to prevent an inadvertent stall under 
the most demanding conditions that are likely to occur in normal flight.  The elevated load factor 
will emphasize any adverse stall characteristics, such as wing drop or asymmetric wing flow 
breakdown, while also investigating Mach and potential aeroelastic effects on available lift.   
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  (2) Procedures. 
 
   (a) Trim at 1.3 VSR.  Once trimmed, accelerate to a speed that will allow enough 
time to set up and complete the maneuver at the specified load factor and airspeed deceleration 
rate.  Set power or thrust appropriate to the power or thrust for level flight at 1.3 VSR and do not 
adjust it during the maneuver.  In a level flight maneuver, 1.5g equates to a bank angle of 
48 degrees.  To prevent an excessive deceleration rate (e.g., greater than 3 knots per second), a 
descent may be used.  Conversely, if the deceleration rate is too low, the maneuver should be 
conducted in a climbing turn. 
 
   (b) After the onset of stall warning, continue the maneuver without releasing stick 
force for one second before attempting recovery.  Normal low speed recovery techniques should 
be used.  If any of the indications of a stall prescribed in § 25.201(d) (see paragraph 29c(1) of 
this AC) occur during the accelerated stall warning demonstration, compliance with § 25.207(f) 
will not have been demonstrated. 
 
 h. Maneuver Margins.  See paragraph 20 of this AC for guidance material associated with 
demonstrating compliance to the maneuvering capability requirements of § 25.143(h). 
 
 i. Additional Considerations for Airplanes Equipped with Stall Identification Systems.  A 
stall identification system is any system that is used to show compliance with § 25.201(d), which 
requires the airplane to give the pilot a clear and distinctive indication of stall.  The stall 
identification system consists of everything from the sensing devices that supply inputs to the 
system to the activation of the system response that provides stall identification to the flightcrew.  
Section 25.1309(a) requires that such a system, when it is needed to show compliance with the 
stall-related requirements, must be designed to perform its intended function under any 
foreseeable operating condition.  
 
  (1)  The applicant should verify that the stall identification system, considering system 
design features (e.g., filtering, phase advancing) and airplane and system production tolerances 
will not result in an unsafe diminishing of the margin between stall warning and stall 
identification, or between stall identification and any hazardous airplane flight characteristic in 
any foreseeable operating condition.  This verification may be provided by a combination of 
analysis, simulation, and flight test.  The following operating conditions should not result in 
unwanted activation of the stall identification system or in aerodynamic stall prior to, or close to, 
activation of the stall warning system: dynamic and accelerated stall entries, the effects of 
atmospheric turbulence, any foreseeable type of wing contamination (e.g., ice, frost, insects, dirt, 
anti-icing fluids), or wing leading edge damage within prescribed maintenance limits.  Operation 
in windshear environments where the airplane will be flown at, or very near, stall warning, 
should also be considered, although, depending on the severity of the windshear, it may be 
impossible to ensure that there is no possibility of stall indication system operation.  For wing 
contamination, the applicant should substantiate the critical height and density of the 
contaminant.  Carborundum sandpaper no. 40 (that is, 40-grit carborundum sandpaper) has been 
used in past certification programs to represent residual ice or frost contamination. 
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  (2) Stall characteristics testing should be performed with the following airplane and 
stall identification system production tolerances set to achieve the most adverse stall 
identification system activation condition for stall characteristics: 
 
   (a) Airframe build tolerances – the impact of wing angle of incidence variation 
relative to stall identification system vane angle; and 
 
   (b) Stall identification system tolerances (e.g., activation vane angles).  
 
   (3) If the combined root-sum-square (square root of the sum of the squares of each 
tolerance) effect of the tolerances identified above is less than ±1 knot, stall speeds testing can be 
performed and the stall speeds determined with the tolerances at their nominal values.  If the 
combined root-sum-square effect is ±1 knot or greater, stall speed testing should be performed 
with the tolerances at the values that would result in the highest stall speeds. 
 
 j. Reliability of Artificial Stall Warning and Stall Identification Systems.  Additional 
guidance material related to the testing and approval of artificial stall warning and stall 
identification systems is presented in paragraph 228 of this AC. 
 
 

Section 7.  Ground and Water Handling Characteristics  
 
 
30. General.  
 
 a. Part 25 Regulations.  The applicable regulations are §§ 25.231, 25.233, 25.235, 25.237, 
and 25.239 of the CFR.  
 
 b. Longitudinal Stability and Control  - § 25.231.  
 
  (1) Explanation.  Test program objectives would not be expected to demonstrate 
taxiing over rough surfaces at speeds high enough to approach structural design limits, nor is it 
expected that in the test program the airplane be landed harder or at higher sink rates than it will 
ever encounter in service.  However, new or modified landing gear systems should be evaluated 
on rough surfaces that are representative of normal service, and landings should be conducted at 
various sink rates sufficient to identify any dangerous characteristics or tendencies.  Variables to 
be considered are c.g. and taxi speed.  The cockpit motion dynamics during ground handling 
should not impede control of the airplane, and pitching motion during bounce should not create 
static pitch control problems or pilot induced oscillation tendencies.   
 
  (2) Procedures.  Ground handling tests at speeds normally expected in service should 
be conducted on smooth and rough surfaces that are likely to be encountered under normal 
operating conditions.  Particular attention should be paid to the following:  
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   (a) Brakes.  The adequacy of the brakes when maneuvering on the ground and the 
tendency of the brakes to cause nosing-over should be investigated.  Any bad tendency will 
normally be exaggerated when taxiing in a strong cross or tail wind.  
 
   (b) Seaplanes and Amphibians.  The most adverse water conditions safe for 
taxiing, takeoff, and landing must be established per § 25.231(b).  Procedure and limitations for 
using reverse thrust should be determined.  
 
 c. Directional Stability and Control - § 25.233.  
 
  (1) Explanation.  None.  
 
  (2) Procedures.  Taxi, takeoff, and landing should be conducted in all configurations 
under normal operating conditions.  
 
   (a) There may be no uncontrollable ground-looping tendency in 90-degree 
crosswinds, up to a wind velocity of 20 knots or 0.2 VSR0, whichever is greater (except that the 
wind velocity need not exceed 25 knots) at any speed at which the airplane may be expected to 
be operated on the ground.  This may be shown while establishing the 90-degree crosswind 
component required by § 25.237.  
 
   (b) Landplanes must be satisfactorily controllable, without exceptional piloting 
skill or alertness in power-off landings at normal landing speed, without using brakes or engine 
power or thrust to maintain a straight path.  This may be shown during power-off landings made 
in conjunction with other tests.   
 
   (c) The airplane must have adequate directional control during taxiing.  This may 
be shown during taxiing prior to takeoffs made in conjunction with other tests.  
 
 d. Taxiing Condition - § 25.235.  [Reserved] 
 
 e. Wind Velocities -§ 25.237.  
 
  (1) Explanation.  
 
   (a) Landplanes.  
 
    1 There must be a 90-degree crosswind component established that is 
shown to be safe for takeoff and landing on dry runways.  
 
    2 The airplane must exhibit satisfactory controllability and handling 
characteristics in 90-degree crosswinds at any ground speed at which the airplane is expected to 
operate.  
 
   (b) Seaplanes and Amphibians.  
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    1 There must be a 90-degree crosswind component established that is 
shown to be safe for takeoff and landing in all water conditions that may reasonably be expected 
in normal operation.  
 
    2 There must be a wind velocity established for which taxiing is safe in any 
direction under all water conditions that may reasonably be expected in normal operation.  
 
   (c) Crosswind Demonstration.  A 90-degree crosswind component at 10 meters 
(as required by § 25.21(f)) of at least 20 knots or 0.2 VSR0 (where VSR0 is for the maximum 
design landing weight), whichever is greater, except that it need not exceed 25 knots, must be 
demonstrated during type certification tests.  There are two results possible:  
 
    1 A crosswind component value may be established that meets the 
minimum requirements but is not considered to be a limiting value for airplane handling 
characteristics.  This demonstrated value should be included as information in the AFM.  
 
    2 A crosswind component value may be established that is considered to be 
a maximum limiting value up to which it is safe to operate for takeoff and landing.  This limiting 
value should be shown in the operating limitations section of the AFM.  
 
  (2) Procedures.  
 
   (a) Configuration.  These tests should be conducted in the following 
configurations:  
 
    1 At light weight and aft c.g.  (This is desirable; however, flexibility should 
be permitted.) 
 
    2 Normal takeoff and landing flap configurations using the recommended 
procedures.  
 
    3 Normal usage of thrust reversers.  Particular attention should be paid to 
any degradation of rudder effectiveness due to thrust reverser airflow effects.   
 
    4 Yaw dampers/turn coordinator On, or Off, whichever is applicable.  
 
   (b) Test Procedures.  Three takeoffs and 3 landings, with at least one landing to a 
full stop, should be conducted in a 90-degree crosswind component of at least 20 knots or 0.2 
VSR0, whichever is greater, except that it need not exceed 25 knots.  For each test condition, a 
qualitative evaluation by the pilot of airplane control capability, forces, airplane dynamic 
reaction in gusty crosswinds (if available), and general handling characteristics should be 
conducted.  The airplane should be satisfactorily controllable without requiring exceptional 
piloting skill or strength.  If thrust reversers are installed, these landings should be conducted 
with the thrust reversers deployed as per normal procedures and additional landings should be 
conducted at the critical reverse thrust/power level to verify that there are no unsatisfactory 
handling characteristics.  
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   (c) Test data.  Crosswind data may be obtained from a calibrated flight test wind 
measurement station, from an airfield wind reporting device, or from any other method 
acceptable to the FAA. 
 
    1 A calibrated flight test wind measurement station located in the vicinity of 
the liftoff or touchdown point generally provides the most accurate data and is preferable. 
 
    2 An airport wind reporting device may also be acceptable provided the 
device has been calibrated and is located near the runway being used for testing. 
 
    3 Crosswind data taken directly from a commercially available inertial or 
differential GPS based reference system may not be accurate in sideslips and is not accurate on 
the ground.  During landing, filtering may introduce lags making the data incorrect due to wind 
shear with altitude (i.e., a higher wind value at altitude is “remembered”).  Hence this method is 
considered unsuitable for accurately determining the crosswind during takeoff and landing. 
 
    4 Other methods based on the computation of the actual crosswind 
encountered by the airplane based on on-board measurements are also acceptable.  For example, 
the crosswind can be computed by resolving the difference between true airspeed (from an ADC) 
and an accurate ground speed measurement (e.g., derived from IRS groundspeed) into the along 
runway and across runway heading taking into account the airplane heading, track angle and 
sideslip.  
 
    5 No matter which method is used, the wind should be continuously time-
recorded throughout the takeoff from brake release (or any low speed above which all data 
necessary to the computation are available and of sufficient accuracy) to a height of 50 ft, and 
throughout the landing from a height of 50 ft to termination of the test event (e.g., full stop, 
touch-and-go, go-around) or any low speed above which all data necessary to the computation 
are available and of sufficient accuracy.  The measured crosswind component should be 
corrected from the height of the measurement device to a height of 10 meters. The average 
crosswind at 90 degrees to the runway heading should then be calculated for the above time 
span. The maximum gust could also be derived during this process, based on the same time span. 
 
    6 With prior agreement from the FAA, it may also be permissible to obtain 
crosswind data from tower wind reports.  However the use of this method should be carefully 
reviewed to ensure that the measurement sensor is properly calibrated to establish the 
measurement sensor reference height, to establish that the smoothing characteristics do not 
produce unacceptable filtering, and that the location of the measurement sensor is appropriate for 
the takeoff and landing runway(s).  Such a method has the disadvantage of not being able to 
provide the gust value during takeoff and landing. 
 
 f. Spray Characteristics, Control, and Stability on Water - § 25.239.  
 
  (1) Explanation.  These characteristics should be investigated at the most adverse 
weight/c.g. combinations.  
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  (2) Procedures.  
 
   (a) The spray characteristics and, in particular, the pilot view during the initial 
takeoff run, should allow sufficient view in order to maintain a reasonable track over the water.  
Since not all seaplane operations are on open lakes or bays, but can be on rivers or channels, the 
directional control and view should be sufficient enough to stay within the channel confines.  
 
   (b) The tendency of the wing floats or sponsons to submerge and/or cause 
waterloops should be evaluated during the crosswind testing.  During the step taxiing 
evaluations, the floats should also be evaluated for any tendency to bury and either cause 
waterlooping or damage.  The procedures used to avoid undesirable characteristics should be 
included in the AFM.  
 
   (c) During low speed taxi, the effectiveness of the water rudders and/or 
asymmetric power or thrust should be evaluated in view of the types of maneuvering to be 
expected in service.  If reverse thrust is to be used, it too should be evaluated in terms of ease of 
accomplishment and crew coordination.  
 
   (d) If an amphibian is intended to be “beached” or run up a ramp, the handling 
characteristics and ability to maneuver onto the ramp should be evaluated.  Forward c.g. is 
generally more critical.  The procedures should be included in the AFM.  There should be no 
undue tendency to damage the bow or other structure.  
 
   (e) Engine failure of the critical engine at any time during the takeoff run should 
be evaluated.  No dangerous porpoising, swerving, or waterlooping should result.  
 
   (f) There should be no undue tendency to porpoise and no extraordinary skill or 
alertness should be required to control porpoising.   
 
   (g) Spray impingement on the airframe (control surfaces, etc.) should be evaluated 
to assure the resulting loads are within acceptable limits.  
 
   (h)  The above evaluations should be performed in the airplane on the water rather 
than by analysis or model testing.  Analysis and/or model testing may be used to point out the 
problem areas but should not be substituted for actual testing.  
 
 

Section 8.  Miscellaneous Flight Requirements  
 
 
31. Vibration and Buffeting - § 25.251.  
 
 a. Explanation.  
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  (1) The testing required by subpart C of part 25 covers the vibration extremes expected 
in service.  The applicant’s flight tests should assure that the regulatory limits are not exceeded.  
Flight testing should not be conducted beyond where structural (subpart C) tests and calculations 
have been completed.  
 
  (2) For § 25.251(b) and (c), vibration and buffeting are considered excessive when it is 
determined that it: 
 
   (a) May cause structural damage or, if sustained over an extended period of time, 
could lead to structural fatigue;  
 
   (b) May cause pilot fatigue or annoyance that interferes with operation of the 
airplane or management of the airplane systems; or  
 
   (c) Interferes with flight instrument readability.  
 
  (3) No perceptible buffeting is permitted in the cruise configuration as required by 
§ 25.251(d).  Weight and/or altitude AFM limitations may need to be imposed to comply with 
this criterion.  Reasonable buffet during the deployment of spoilers and other high drag devices 
is permitted to the extent allowed under § 25.251(b) and (c), as described in paragraph (2) above.  
 
  (4) For airplanes with MD greater than 0.6 or with a maximum operating altitude 
greater than 25,000 feet, the buffet onset envelope must be established for the ranges of airspeed 
and/or Mach number, weight, altitude, and load factor for which the airplane is to be certificated.  
This envelope must be provided in the AFM in accordance with § 25.1585(d).  These AFM data 
should be valid criteria for forward c.g. conditions or correctable to forward c.g. by the use of 
AFM procedures.  This boundary should be established by pilot qualitative evaluation or by 
correlation with pilot qualitative evaluation, as there is no predetermined criterion for buffet 
level at the pilot station.  A normal acceleration of +0.05 g has been used in some cases; 
however, the appropriate acceleration level will vary from airplane to airplane and may also be 
affected by the dynamic response of the accelerometer.  If a measured normal acceleration is to 
be used, the acceleration level and specific accelerometer should first be correlated against a 
pilot’s assessment of the onset of buffet. 
 
  (5) Modifications to airplanes, particularly modifications that may affect airflow about 
the wing, should be evaluated for their effect on vibration and buffeting characteristics, changes 
in the speeds for onset of buffet, and maneuvering characteristics beyond buffet onset.  This 
change may not only impact the buffet boundary envelope, but may change the acceptability of 
the VMO/MMO or VDF/MDF speeds established on the unmodified airplane.  If this occurs, the 
maximum operating speed and demonstrated flight diving speed may need to be reduced.  
However, the regulations concerning the speed spread margin between VMOMMO and VDF/MDF 
remain in effect.  Systems and flight characteristics affected by the reduced maximum speeds 
should also be reevaluated.  Indicator markings, overspeed horns, etc. must be reset, as 
necessary, to remain in compliance with the applicable regulations.  
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  (6) On swept-wing airplanes, undesirable pitch-up maneuvering characteristics can 
occur as the center of lift moves inboard and forward with increasing g, due to shock-wave 
induced separation and/or as wing load alleviation systems unload the wingtips.  Straight-wing 
airplanes can also exhibit similar characteristics; therefore, new airplanes and those modified in a 
manner that may affect the spanwise lift distribution or produce undesirable pitching moment as 
a function of g, or increase the exposure to high altitude buffet encounters, should be evaluated 
as described herein.  
 
  (7) Section 25.251(e) requires that “probable inadvertent excursions beyond the 
boundaries of buffet” may not result in “unsafe conditions.”  In order to assure that no unsafe 
conditions are encountered in maneuvering flight, maneuvering flight evaluations to demonstrate 
satisfactory maneuvering stability are described below.  A determination of the longitudinal 
maneuvering characteristics should be made to assure the airplane is safely controllable and 
maneuverable in the cruise configuration to assure there is no danger of exceeding the airplane 
limit load factor, and that the airplane’s pitch response to the primary longitudinal control is 
predictable to the pilot.   
 
 b. Procedures.  
 
  (1) Section 25.251(a).  The test procedures outlined below will provide the necessary 
flight demonstrations for compliance with § 25.251(a).  
 
  (2) Section 25.251(b).  The airplane should be flown at VDF/MDF at several altitudes 
from the highest practicable cruise altitude to the lowest practicable altitude.  The test should be 
flown starting from trimmed flight at VMO/MMO at a power or thrust setting not exceeding 
maximum continuous power or thrust.  The airplane gross weight should be as high as 
practicable for the cruise condition, with the c.g. at or near the forward limit.  In addition, 
compliance with § 25.251(b) should be demonstrated with high drag devices (i.e., speed brakes) 
deployed at VDF/MDF.  Thrust reversers, if designed for inflight deployment, should be deployed 
at their limit speed conditions.  
 
  (3) Section 25.251(c).  The weight of the airplane should be as heavy as practical, 
commensurate with achieving the maximum certificated altitude.  
 
  (4) Section 25.251(d).  It should be demonstrated in flight tests that perceptible 
buffeting does not occur in straight flight in the cruise configuration, at any speed up to 
VMO/MMO, to show compliance with § 25.251(d).  This should be met from initial combinations 
of critical weight and altitude, if achievable, where the airplane has a 0.3 g margin to the buffet 
onset boundary developed under § 25.251(e).  These initial conditions should be established 
using a nominal cruise Mach number (typically long-range cruise Mach, MLRC) with the c.g. at 
the forward limit.  This flight condition is representative of practical operating criteria imposed 
by most operators.  From these initial conditions, the airplane should be accelerated in 1 g flight 
to VMO/MMO using maximum continuous power or thrust.  Descending flight is acceptable if 
needed to achieve VMO/MMO.   
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  (5) Section 25.251(e).  Section 25.251(e) requires the determination of the buffet onset 
envelope, in the cruise configuration, for airplanes with MD greater than 0.6 or maximum 
operating altitudes greater than 25,000 feet.  This requirement also provides criteria for 
evaluation of maneuvering stability in cruise flight under load factor conditions up to and beyond 
the onset of buffet. 
 
   (a) The determination of compliance with § 25.251(e), using flight test data from 
maneuvers conducted well into buffet, is extremely difficult due to the dynamics of this type of 
maneuver and the establishment of the FS/g relationship from such data.  The pilot flying the 
airplane needs to evaluate the airplane characteristics under such conditions.  Figure 31-1 
provides guidance on stick force per g (FS/g) characteristics that would be considered acceptable 
or unacceptable.   
 
   (b) For determination of the buffet onset envelope, the flight tests should be 
conducted at forward c.g.  For maneuvering characteristics, airplanes should be evaluated at the 
most aft c.g. in accordance with the following criteria: 
 
    1 For all weight/altitude combinations where buffet onset occurs at various 
load factors between approximately +1 g and +2 g, the longitudinal control force (FS) 
characteristics of § 25.255(b)(1) and (2) apply prior to encountering that buffet onset (see figure 
31-1).  
 
    2 Under the airplane weight/altitude combinations of 1, above, but at load 
factors beyond buffet onset, the following FS characteristics apply (see figure 31-1):  
 
     (aa) The evaluation should proceed to a g level that will allow recovery to 
be accomplished near +2.5 g, unless sufficient buffet or other phenomena (natural, artificial, or a 
combination) of such intensity exists that is a strong and effective deterrent to further pilot 
application of nose-up longitudinal control force (as in § 25.201(d)(2)) so that there is no danger 
of exceeding the airplane limit load factor (Ref. § 25.143(b)). 
 

NOTE: A strong and effective deterrent is analogous to that required for stall 
identification; stick shaker or stall warning buffet are not considered to be an 
adequate end point for these tests. 

 
     (bb) Any pitching tendency (uncommanded changes in load factor) 
should be mild and readily controllable.  
 
     (cc) Sufficient control should be available to the pilot, through 
unreversed use of only the primary longitudinal control, to affect a prompt recovery to +1 g 
flight from the load factors described herein. 
 
     (dd) The airplane’s pitch response to primary longitudinal control should 
be predictable to the pilot.  
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    3 Experience has shown that maneuvering evaluations conducted at the 
highest Mach and the highest weight and altitude (W/δ) combination may not necessarily 
produce the most critical results.  Equally important is the character of the buffet buildup (e.g., 
slowly increasing or rapid rise, and the g at which it starts).  Conditions associated with buffet 
onset near 2 g at Mach numbers below MMO have sometimes yielded the most critical 
characteristics.  Therefore, a sufficient spread of conditions should be evaluated.  
 

Figure 31-1.  Maneuvering Characteristics at Speeds up to VMO/MMO 

 

.  
* These characteristics are satisfactory only in accordance with paragraphs 31b(5)(b)1 and 2. 

 
32. High Speed Characteristics - § 25.253.  
 
 a. Explanation.  
 
  (1) The maximum flight demonstrated dive speed, VDF/MDF, selected by the applicant, 
is used along with VD/MD when establishing VMO/MMO in accordance with the associated speed 
margins under the provisions of § 25.1505.  Both VMO/MMO and VDF/MDF are then evaluated 
during flight tests for showing compliance with § 25.253.  
 
  (2) The pitch upset defined in § 25.335(b), as amended by Amendment 25-23, or 
defined in § 25.1505, prior to Amendment 25-23, provides a means for determining the required 
speed margin between VMO/MMO and both VD/MD and VDF/MDF.  The operational upsets 
expected to occur in service for pitch, roll, yaw, and combined axis upsets are evaluated when 
showing compliance to § 25.253 and must not result in exceeding VD/MD or VDF/MDF.  
 
  (3) In general, the same maneuvers should be accomplished in both the dynamic 
pressure and Mach critical ranges.  All maneuvers in either range should be accomplished at 
power/thrust and trim points appropriate for the specific range.  Some maneuvers in the Mach 
range may be more critical for some airplanes due to drag rise characteristics, and at high 
altitudes a lower gross weight may be required to achieve the maximum approved operating 
altitude and Mach/airspeed conditions.  
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  (4) The airplane’s handling characteristics in the high speed range should be 
investigated in terms of anticipated action on the part of the flightcrew during normal and 
emergency conditions.  
 
  (5) At least the following factors should be considered in determining the necessary 
flight tests: 
 
   (a) Effectiveness of longitudinal control at VMO/MMO and up to VDF/MDF.  
 
   (b)   Effect of any reasonably probable mistrim on upset and recovery.  
 
   (c)   Dynamic and static stability.  
 
   (d)   The speed increase resulting from likely passenger movement when trimmed 
at any cruise speed to VMO/MMO.  
 
   (e)   Trim changes resulting from compressibility effects.  
 
   (f)   Characteristics exhibited during recovery from inadvertent speed increase.  
 
   (g)   Upsets due to vertical and horizontal gusts (turbulence).   
 
   (h)   Speed increases due to horizontal gusts and temperature inversions. 
 
   (i)   Effective and unmistakable aural speed warning at VMO plus 6 knots, or  
MMO plus 0.01 M.  
 
   (j)   Speed and flight path control during application of deceleration devices. 
 
   (k)   Control forces resulting from the application of deceleration devices.  
 
  (6) Section 25.1505 states that the speed margin between VMO/MMO, and VD/MD or 
VDF/MDF, as applicable, “may not be less than that determined under § 25.335(b) or found 
necessary during the flight tests conducted under § 25.253.”  Note that one speed margin must be 
established that complies with both § 25.335(b) and § 25.253.  Therefore, if the applicant 
chooses a VDF/MDF that is less than VD/MD, then VMO/MMO must be reduced by the same amount 
(i.e., compared to what it could be if VDF/MDF were equal to VD/MD) in order to provide the 
required speed margin to VDF/MDF.  In determining the speed margin between VMO/MMO and 
VDF/MDF during type certification programs, the factors outlined in paragraph (5), above, should 
also be considered in addition to the items listed below: 
 
   (a) Increment for production tolerances in airspeed systems (0.005 M), unless 
larger differences are found to exist.  
 
   (b) Increment for production tolerances of overspeed warning error (0.0l M).  
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   (c) Increment M due to speed overshoot from MMO, established during flight 
tests in accordance with § 25.253, should be added to the values for production differences and 
equipment tolerances.  The value of MMO may not be greater than the lowest value obtained from 
each of the following equations, which reflect the requirements of §§ 25.253 and 25.1505:  
 
   MMO    MDF - M - 0.005 M - 0.0l M  
 
   or  
 
   MMO     MDF - 0.07 M 
 

NOTE: The combined minimum increment may be reduced from 0.07 M to as 
small as 0.05 M if justified by the rational analysis used to show compliance with 
§ 25.335(b)(2).  

 
   (d)  At altitudes where VMO is limiting, the increment for production differences of 
airspeed systems and production tolerances of overspeed warning errors are 3 and 6 knots, 
respectively, unless larger differences or errors are found to exist.  
 
   (e)  Increment V due to speed overshoot from VMO, established during flight tests 
in accordance with § 25.253, should be added to the values for production differences and 
equipment tolerances.  The value of VMO should not be greater than the lowest obtained from the 
following equation, and from § 25.1505:  
 
   VMO    VDF  -  V             -           3 knots                  -               6 knots  
                                                           (production differences)      (equipment tolerances) 
 
   (f)  For an airplane with digital interface between the airspeed system and the 
overspeed warning system, the production tolerance for the warning system may be deleted 
when adequately substantiated. 
 
 b. Regulations Affected.  These criteria refer to certain provisions of part 25.  They may 
also be used in showing compliance with the corresponding provisions of the former Civil Air 
Regulations (CAR) in the case of airplanes for which these regulations apply.  Other affected 
CFR are as follows:  
 
 Section 25.175(b)    Demonstration of static longitudinal stability.  

 Section 25.251    Vibration and buffeting.  

 Section 25.253    High-speed characteristics.  

 Section 25.335(b)    Design dive speed, VD.  

 Section 25.1303(b)(1) and (c)     Flight and navigation instruments.  

 Section 25.1505    Maximum operating limit speed.  
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 c. Procedures.  Using the speeds VMO/MMO and VDF/MDF determined in accordance with 
§§ 25.1505 and 25.251, respectively, and the associated speed margins, the airplane should be 
shown to comply with the high-speed characteristics of § 25.253.  Unless otherwise stated, the 
airplane characteristics should be investigated beginning at the most critical speed up to and 
including VMO/MMO, and the recovery procedures used should be those selected by the applicant, 
except that the normal acceleration during recovery should be no more than l.5 g (total).  Testing 
should be conducted with the c.g. at the critical position and generally perpendicular to local 
wind aloft.  
 
  (1) C.g. Shift.  The airplane should be upset by the c.g. shift corresponding to the 
forward movement of a representative number of passengers (and/or serving carts) depending 
upon the airplane interior configuration.  The airplane should be permitted to accelerate until 3 
seconds after VMO/MMO.  
 
  (2) Inadvertent Speed Increase.  Simulate an evasive control application when trimmed 
at VMO/MMO, by applying sufficient forward force to the pitch control to produce 0.5 g (total) for 
a period of 5 seconds, after which recovery should be initiated at not more than 1.5 g (total).  
 
  (3) Gust Upset.  In the following three upset tests, the values of displacement should be 
appropriate to the airplane type and should depend upon airplane stability and inertia 
characteristics.  The lower and upper limits should be used for airplanes with low and high 
maneuverability, respectively.  
 
   (a) With the airplane trimmed in wings-level flight, simulate a transient gust by 
rapidly rolling to the maximum bank angle appropriate for the airplane, but not less than 45 
degrees nor more than 60 degrees.  The rudder and longitudinal control should be held fixed 
during the time that the required bank is being attained.  The rolling velocity should be arrested 
at this bank angle.  Following this, the controls should be abandoned for a minimum of 3 seconds 
after VMO/MMO or 10 seconds, whichever occurs first.  
 
   (b) Perform a longitudinal upset from normal cruise.  Airplane trim is determined 
at VMO/MMO using power/thrust required for level flight but with not more than maximum 
continuous power/thrust.  (If VMO/MMO cannot be reached in level flight with maximum 
continuous power or thrust, then the airplane should be trimmed at VMO/MMO in as shallow a 
descent as practicable that allows VMO/MMO to be reached.)  This is followed by a decrease in 
speed, after which a pitch attitude of 6-12 degrees nose down, as appropriate for the airplane 
type, is attained using the same power/thrust and trim.  The airplane is permitted to accelerate 
until 3 seconds after VMO/MMO.  The force limits of § 25.143(d) for short term application apply. 
 
   (c) Perform a two-axis upset, consisting of combined longitudinal and lateral 
upsets.  Perform the longitudinal upset, as in paragraph (b) above, and when the pitch attitude is 
set, but before reaching VMO/MMO, roll the airplane 15-25 degrees.  The established attitude 
should be maintained until 3 seconds after VMO/MMO.  
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  (4) Leveling Off from Climb.  Perform transition from climb to level flight without 
reducing power or thrust below the maximum value permitted for climb until 3 seconds after 
VMO/MMO.  Recovery should be accomplished by applying not more than 1.5 g (total).  
 
  (5) Descent from Mach Airspeed Limit Altitude.  A descent should be performed at the 
airspeed schedule defined by MMO and continued until 3 seconds after VMO/MMO occurs, at 
which time recovery should be accomplished without exceeding 1.5 g (total). 
 
  (6) Roll Capability, § 25.253(a)(4).  
 
   (a)  Configuration:  
 
    1 Wing flaps retracted.  
 
    2   Speedbrakes retracted and extended.  
 
    3   Landing gear retracted.  
 
    4   Trim.  The airplane trimmed for straight flight at VMO/MMO. The trimming 
controls should not be moved during the maneuver.  
 
    5   Power:  
 
     (aa)  All engines operating at the power required to maintain level flight at 
VMO/MMO, except that maximum continuous power need not be exceeded; and  
 
     (bb)  If the effect of power is significant, with the throttles closed.  
 
   (b) Test Procedure.  An acceptable method of demonstrating that roll capability is 
adequate to assure prompt recovery from a lateral upset condition is as follows:  
 
    1   Establish a steady 20-degree banked turn at a speed close to VDF/MDF 
limited to the extent necessary to accomplish the following maneuver and recovery without 
exceeding VDF/MDF.  Using lateral control alone, it should be demonstrated that the airplane can 
be rolled to a 20-degree bank angle in the opposite direction in not more than 8 seconds.  The 
demonstration should be made in the most adverse direction.  The maneuver may be unchecked.  
 
    2   For airplanes that exhibit an adverse effect on roll rate when rudder is 
used, it should also be demonstrated that use of rudder to pick up the low wing in combination 
with the lateral control will not result in a roll capability significantly below that specified above.  
 
  (7)  Extension of Speedbrakes.  The following guidance is provided to clarify the 
meaning of the words “the available range of movements of the pilot’s control” in § 25.253(a)(5) 
and to provide guidance for demonstrating compliance with this requirement.  Normally, the 
available range of movements of the pilot’s control includes the full physical range of 
movements of the speedbrake control (i.e., from stop to stop).  Under some circumstances, 
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however, the available range of the pilot’s control may be restricted to a lesser range associated 
with in-flight use of the speedbrakes.  A means to limit the available range of movement to an in-
flight range may be acceptable if it provides an unmistakable tactile cue to the pilot when the 
control reaches the maximum allowable in-flight position and compliance with § 25.697(b) is 
shown for positions beyond the in-flight range.  Additionally, the applicant’s recommended 
procedures and training must be consistent with the intent to limit the in-flight range of 
movements of the speedbrake control.  
 
   (a)  Section 25.697(b) requires that lift and drag devices intended for ground 
operation only must have means to prevent the inadvertent operation of their controls in flight if 
that operation could be hazardous.  If speedbrake operation is limited to an in-flight range, 
operation beyond the in-flight range of available movement of the speedbrake control must be 
shown to be not hazardous.  Two examples of acceptable, unmistakable tactile cues for limiting 
the in-flight range are designs incorporating either a gate or both a detent and a substantial 
increase in force to move the control beyond the detent.  It is not an acceptable means of 
compliance to restrict the use of or available range of the pilot’s control solely by means of an 
Airplane Flight Manual limitation or procedural means.  
 
   (b)   The effect of extension of speedbrakes may be evaluated during other high 
speed testing (for example, paragraphs 31b(2) and 32c(1) through (5) of this AC) and during the 
development of emergency descent procedures.  It may be possible to infer compliance with 
§ 25.253(a)(5) by means of this testing.  To aid in determining compliance with the qualitative 
requirements of this rule, the following quantitative values may be used as a generally acceptable 
means of compliance.  A positive load factor should be regarded as excessive if it exceeds 2 g.  
A nose-down pitching moment may be regarded as small if it necessitates an incremental force 
of less than 20 pounds to maintain 1 g flight.  These values may not be appropriate for all 
airplanes, and will depend on the characteristics of the particular airplane design in high speed 
flight.  Other means of compliance may be acceptable, provided that compliance has been shown 
to the qualitative requirements specified in § 25.253(a)(5).  
 
 
33. Out-Of-Trim Characteristics - § 25.255.  
 
 a. Explanation.  Certain early, trimmable stabilizer equipped jet transports experienced “jet 
upsets” that resulted in high speed dives.  When the airplane was mistrimmed in the nose-down 
direction and allowed to accelerate to a high airspeed, it was found that there was insufficient 
elevator power to recover.  Also, the stabilizer could not be trimmed in the nose-up direction, 
because the stabilizer motor stalled due to excessive airloads imposed on the horizontal 
stabilizer.  As a result, a special condition was developed and applied to most part 25 airplanes 
with trimmable stabilizers.  With certain substantive changes, it was adopted as § 25.255, 
effective with Amendment 25-2.  While these earlier problems seem to be generally associated 
with airplanes having trimmable stabilizers, it is clear from the preamble discussions to 
Amendment 25-42 that § 25.255 applies “regardless of the type of trim system used in the 
airplane.”  Section 25.255 is structured to give protection against the following unsatisfactory 
characteristics during mistrimmed flight in the higher speed regimes:  
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  (1) Changes in maneuvering stability leading to overcontrolling in pitch.  
 
  (2) Inability to achieve at least l.5 g for recovery from upset due to excessive control 
forces. 
 
  (3) Inability of the flightcrew to apply the control forces necessary to achieve recovery.  
 
  (4) Inability of the pitch-trim system to provide necessary control force relief when 
high control force inputs are present.  
 
 b. Reference Regulation.  Section 25.255. 
 
 c. Discussion of the Regulation.  
 
  (1) Section 25.255(a) is the general statement of purpose.  Maneuvering stability may 
be shown by a plot of applied control force versus normal acceleration at the airplane c.g..  
Mistrim must be set to the greater of the following:  
 
   (a) Section 25.255(a)(l).  A 3-second movement of the longitudinal trim system at 
its normal rate for the particular flight condition with no aerodynamic load.  Since many modern 
trim systems are variable rate systems, this subsection requires that the maneuver condition be 
defined and that the no-load trim rate for that condition be used to set the degree of mistrim 
required.  For airplanes that do not have power-operated trim systems, experience has shown a 
suitable amount of longitudinal mistrim to be applied is that necessary to produce a 30 pound 
control force, or reach the trim limit, whichever occurs first. 
 
   (b) Section 25.255(a)(2).  The maximum mistrim that can be sustained by the 
autopilot while maintaining level flight in the high speed cruising condition.  The high speed 
cruising condition corresponds to the speed resulting from maximum continuous power or thrust, 
or VMO/MMO, whichever occurs first.  Maximum autopilot mistrim may be a function of several 
variables, and the degree of mistrim should therefore correspond to the conditions of test.  In 
establishing the maximum mistrim that can be sustained by the autopilot, the normal operation of 
the autopilot and associated systems should be taken into consideration.  If the autopilot is 
equipped with an auto-trim function, then the amount of mistrim that can be sustained, if any, 
will generally be small.  If there is no auto-trim function, consideration should be given to the 
maximum amount of out-of-trim that can be sustained by the elevator servo without causing 
autopilot disconnect. 
 
  (2) Section 25.255(b) establishes the basic requirement to show positive maneuvering 
stability throughout a specified acceleration envelope at all speeds to VFC/MFC, and the absence 
of longitudinal control force reversals throughout that acceleration envelope at speeds between 
VFC/MFC and VDF/MDF.  (Later subsections (d) and (e) recognize that buffet boundary and control 
force limits will limit the acceleration actually reached; this does not account for Mach trim gain, 
etc.) 
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   (a) The out-of-trim condition for which compliance must be shown with 
§ 25.255(b) is specified in § 25.255(a).  For the initial trimmed condition before applying the 
mistrim criteria, the airplane should be trimmed at: 
 
    1 For speeds up to VMO/MMO, the particular speed at which the 
demonstration is being made; and  
 
    2 For speeds higher than VMO/MMO, VMO/MMO. 
 
   (b) Section 25.255(b)(2) appears to indicate that unstable airplane characteristics 
would be satisfactory, regardless of the character of the primary longitudinal control force as 
load factor is increased, as long as the force did not reverse (e.g., from a pull to a push).  While 
such criteria may have merit for evaluating airplanes when starting the maneuver from a trimmed 
condition, it can be shown that this provides a poor specification for evaluating an airplane’s 
maneuvering characteristics when starting the test from the specified mistrimmed condition.  For 
example, an airplane would be deemed to have unacceptable characteristics with a nose-up 
mistrim, if while relaxing the large initial elevator push force to increase the load factor to the 
specified value, the elevator force just happened to cross through zero to a slight pull force at one 
load factor, and then back through zero to a push force at a higher load factor.  Such an 
airplane’s characteristics are clearly superior to one that has a severe elevator force slope 
reversal, during the same maneuver, but never reaches a zero elevator force condition as the load 
factor is increased.  A literal interpretation of § 25.255(b)(2) would find this airplane to be 
compliant, while finding the preceding airplane non-compliant because it had a slight reversal of 
the primary longitudinal control force. 
 
   (c) Section 25.255(b)(2) should be interpreted to mean that the primary 
longitudinal control force, for load factors greater than 1.0, may not be less than that used to 
obtain the initial 1g flight condition.  This is illustrated in Figure 33-1. Slight control force 
reversals, as discussed in paragraph (a), above, will be permitted for speeds between VFC/MFC 
and VDF/MDF only if: 
 
 
    1 No severe longitudinal control force slope reversals exist; 
 
    2 Any pitching tendency (uncommanded changes in load factor) should be 
mild and readily controllable; and 
 
    3 The airplane’s pitch response to primary longitudinal control should be 
predictable to the pilot. 
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Figure 33-1.  Mistrimmed Maneuvering Characteristics 
 

Speeds Between VFC/MFC and VDF/MDF 

 
  (3) Section 25.255(c) requires that the investigation of maneuvering stability 
(§ 25.255(b)) include all attainable acceleration values between –l g and +2.5 g.  Sections 
25.333(b) and 25.337, to which it refers, limit the negative g maximum to 0 g at VD.  Section 
25.251 further limits the g to that occurring in probable inadvertent excursions beyond the buffet 
onset boundary at those altitudes where buffet is a factor.  
 
  (4) Section 25.255(c)(2) allows for extrapolation of flight test data by an acceptable 
method.  For example, if the stick force gradient between 0 and +2 g agrees with predicted data, 
extrapolation to -1 g and 2.5 g should be allowed.  
 
  (5) Section 25.255(d) requires flight tests to be accomplished from the normal 
acceleration at which any marginal stick force reversal conditions are found to exist to the 
applicable limits of § 25.255(b)(1).  This requirement takes precedence over the extrapolation 
allowance described in paragraph (4), above.  
 
  (6) Section 25.255(e), limits the investigation to the required structural strength limits 
of the airplane and maneuvering load factors associated with probable inadvertent excursions 
beyond the boundary of the buffet onset envelope.  It also accounts for the fact that speed may 
increase substantially during test conditions in the -1 g to +1 g range.  It limits the entry speed to 
avoid exceeding VDF/MDF.  
 
  (7) Section 25.255(f) requires that in the out-of-trim condition specified in § 25.255(a), 
it must be possible to produce at least 1.5 g during recovery from the overspeed condition of 
VDF/MDF.  If adverse flight characteristics preclude the attainment of this load factor at the 
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highest altitude reasonably expected for recovery to be initiated at VDF/MDF following an upset at 
high altitude, the flight envelope (c.g., VDF/MDF, altitude, etc.) of the airplane should be 
restricted to a value where 1.5 g is attainable.  If trim must be used for the purpose of obtaining 
1.5 g, it must be shown to operate with the primary control surface loaded to the least of three 
specified values.  
 
   (a) The force resulting from application of the pilot limit loads of § 25.397 (300 
lbs.).  
 
   (b) The control force required to produce 1.5 g (between 125 and 300 lbs.).  
 
   (c) The control force corresponding to buffeting or other phenomena of such 
intensity that it is a strong deterrent to further application of primary longitudinal control force.  
 
 d. Procedures.  
 
  (1) Compliance is determined by the characteristics of FS/g (normally a plot).  Any 
standard flight test procedure that yields an accurate evaluation of FS/g data in the specified 
range of speeds and acceleration should be considered for acceptance.  Bounds of investigation 
and acceptability are set forth in the rule and in discussion material above, and broad pilot 
discretion is allowed in the selection of maneuvers.  
 
  (2) Investigation Range.  Out-of-trim testing should be done at the most adverse 
loading for both high and low control forces.  Testing should be accomplished both at the 
dynamic pressure (q) and Mach limits.  
 
  (3) The ability to move the primary controls (including trim), when loaded, should be 
considered prior to the tests.  
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Chapter 3 - Structure 
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Chapter 4 - Design and Construction 
 
 

Section 1.  General [Reserved] 
 

Section 2.  Control Surfaces [Reserved] 
 

Section 3.  Control Systems 
 
34. General - § 25.671. 
 
 a. Explanation.  This material deals with the all-engines out case of § 25.671(d).  The 
intent of this rule is to assure that in the event of failure of all engines, the airplane will be 
controllable, and an approach and landing flare possible.  This may be done by analysis where 
the method is considered reliable. 
 
 b. Procedures.   
 
  (1) In accordance with § 25.671(d), the airplane must be controllable when all engines 
fail.  Compliance should be shown for each approved configuration.  The airplane should remain 
controllable following the failure of the engines.  Reconfiguration, if possible with all engines 
failed, is permitted.  Any such reconfiguration should be included in the AFM operating 
procedures for an all engines failed condition. 
 
  (2) The effectiveness of the emergency power to drive the airplane control system, 
whether generated from a windmilling engine or an auxiliary power supply, should be 
demonstrated in flight. 
 
  (3) Past approaches to showing compliance with § 25.671(d) have been to show that 
the airplane is controllable following the failure of all engines in the climb, cruise, descent, 
approach, and holding configurations and can be flared to a landing attitude from a reasonable 
approach speed. 
 
  (4) For airplanes with fully powered or electronic flight control systems, the non-
normal procedures section of the approved AFM should contain appropriate operating 
procedures and a statement similar to the following: 
 
  “The airplane has a fully powered (or electronic) control system that is dependent upon 

engine windmill R.P.M., or an auxiliary power supply, to provide the necessary source 
of control system power in the event all engines fail in flight.  A minimum airspeed of 
  XXX   knots IAS will provide adequate hydraulic or electrical power for airplane 
controllability in this emergency condition.” 

 
35. - 45. [Reserved] 
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46. Flap and Slat Interconnections - § 25.701. 
 
 a. Explanation.  In accordance with § 25.701(a), if the wing flaps are not mechanically 
interconnected, tests or analysis should be conducted to show that the airplane has safe flight 
characteristics with asymmetric flap or slat deployment. 
 
 b. Reference.  See AC 25-22, “Certification of Transport Airplane Mechanical Systems” 
dated March 14, 2000, for additional guidance. 
 
 c.  Procedures.  Simulate appropriate flap and slat malfunctioning during takeoffs, 
approaches, and landings to demonstrate that the airplane is safe under these conditions.  To be 
considered safe, adequate stall margins and controllability should be retained without requiring 
exceptional piloting skill or strength.  Additionally, there should be no hazardous change in 
altitude or attitude during transition to the asymmetric condition considering likely transition 
rates. 
 
47. Takeoff Warning System - § 25.703.  [Reserved] 
 
 

 Section 4.  Landing Gear 
 
 
48. - 51. [Reserved] 
 
52. Retracting Mechanism - § 25.729.  
 
 a. Explanation.  None.  
 
 b. Procedures.  
 
  (1) In accordance with the provisions of § 25.729, flight tests should be conducted to 
demonstrate the ability of the landing gear and associated components, in their heaviest 
configuration, to properly extend and retract at: 
 
   (a) VLO (the placard airspeed) in the cruise configuration at near 1g flight and 
normal yaw angles; and 
 
   (b) Airspeeds and flap settings corresponding to typical landings.  The landing 
gear operating placard airspeed, VLO, established in accordance with § 25.1515(a), should not 
exceed the 1.6 VS1 design value of § 25.729(a)(1)(ii).   
 

NOTE: “Normal” yaw angles are those associated with engine-out flight and 
counteracting crosswinds of up to 20 knots. 

 
  (2) The alternate extend system should be demonstrated at airspeeds up to VLO at near 
1g flight and normal yaw angles.  An envelope of emergency extension capability should be 
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established and presented in the emergency operating procedures section of the AFM.  (Refer to 
NOTE paragraph above.) 
 
  (3) Operation test. - § 25.729(d). 
 
   (a) The engine-out gear retraction time should be determined from flight tests 
with one engine at idle power or thrust and the operating engine(s) adjusted to provide the lowest 
thrust-to-weight ratio to be certificated.  The hydraulic system should be in the critical 
configuration corresponding to an actual engine failure condition.  The airplane should be 
stabilized on a steady heading before gear retraction is initiated.  The resulting gear retraction 
time will be used in developing AFM takeoff flight path performance information in accordance 
with § 25.111. 
 
   (b) Gear retraction time is the time from landing gear lever movement to the “UP” 
position until the last landing gear, including doors, is in the retracted configuration.  Allowance 
should be made for any delays associated with the landing gear indication system. 
 
  (4)  Position indication and aural warning, § 25.729(e):  It should be confirmed that the 
actual landing gear position agrees with the position indicated on the landing gear indicator.  
Landing gear aural warning should meet the intent of § 25.729(e)(2) through (e)(4).  A 
combination of flight tests, ground tests, and analysis may be used to show compliance with 
these requirements. 
 
53. Wheels - § 25.731. 
 
 a. References. 
 
  (1) TSO-C135a “Transport Airplane Wheels and Wheel and Brake Assemblies,” dated 
July 1, 2009. 
 
  (2) Paragraph 55b(4)(f) of this AC, Wheel Fuse Plugs. 

  (3) Paragraph 55c(7) of this AC, Wheel Fuse Plug Design. 

  (4) AC 21-29C, change 1, “Detecting and Reporting Suspected Unapproved Parts,” 
dated July 22, 2008. 
 
 b. Explanation. 
 
  (1) Background. 
 
   (a) Original guidelines for wheels in § 4b.335 of the Civil Air Regulations (CAR) 
were superseded by TSO-C26 and subsequent revisions.  Early versions of TSO-C26 referred to 
minimum standard requirements in versions of Society of Automotive Engineers (SAE) 
Aeronautical Standard (AS) 227.  Minimum standards were subsequently specified in TSO-C26b 
and later revisions.  For braked wheels, wheels and brakes must be approved under § 25.735(a) 
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as an assembly in recognition of design and safety interdependencies associated with thermal 
control, vibration control, structural stresses, etc.  References (2) and (3) of paragraph a, above, 
provide insight into the criticality of proper fuse function to support airworthiness.  As demands 
increased for longer life wheels and more robust designs, changes were introduced such as the 
addition of combined vertical and side loads for a portion of roll testing; an increase in roll miles 
at maximum static load from 1,000 to 2,000 miles; and addition of a roll-on-rim requirement to 
increase robustness in wheel flange areas. 
 
   (b) In most cases, wheels are usually removed from service based upon condition.  
Typically, inspection frequency will increase as life on a particular wheel is accumulated in 
accordance with the wheel and brake suppliers component maintenance manual (CMM).  If 
wheel failures occur on the airplane, they typically occur when the airplane is on the ground with 
wheel and tire assembly loaded. 
 
   (c) The trend in certain airplane manufacturer specifications is to place additional 
longevity and safety focused test requirements on wheel and brake suppliers.  Added 
requirements, such as fail safe design verification(s), testing to failure of uncorroded and 
corroded wheels, and mandated use of over pressurization protection devices (in addition to 
fuses) have been incorporated.  With the introduction of longer life tires, the demands on wheels 
and components, such as wheel bearings, have further intensified as landings between 
inspections at tire overhauls have increased.  In addition, airplane manufacturers should be 
involved in wheel design, test, and manufacturer approvals to ensure that airplane specific needs 
have been addressed.  For example, at least one airplane manufacturer specifies a missing wheel 
tie bolt requirement so that minimum equipment list (MEL) dispatch relief can be provided for a 
limited number of cycles.  As a second example, individual airplane manufacturers may specify 
intensified wheel load and/or test requirements to account for various tire failure modes on 
multi-wheeled landing gear truck and other airplane landing gear configurations.  Therefore, 
continued airworthiness of a particular wheel/tire or wheel/brake/tire assembly is usually 
demonstrated by compliance with airplane manufacturer requirements and not TSO minimum 
standards. 
 
   (d) Separate wheel applicable TSO and ( if applicable) airplane manufacturer tests 
are performed with radial and bias tires due to different tire-to-wheel interface loading and 
resultant wheel stress pattern and deflection/clearance differences.  For braked wheels, separate 
wheel and brake assembly tests are performed with radial and bias tires due to differences in tire 
energy absorption that may be encountered.  Some significant differences in wheel life have been 
reported by one wheel and brake supplier in one case using bias tires from different tire 
manufacturers.  Typically, however, wheel/tire, or wheel/brake/tire assembly tests using different 
manufacturer bias tires have not been shown to be necessary. 
 
   (e) Wheel bearings in transport category airplane wheels should be qualified as 
part of the wheel assembly.  Industry experience indicates that qualification of a specific 
manufacturer’s bearing(s) in a given wheel assembly is required to assure proper performance 
and airworthiness.  Standard part bearing assemblies are not acceptable unless performance can 
be demonstrated during wheel qualification testing.  It has been reported that roller end scoring 
is the most common mechanism leading to bearing failures on the airplane. 
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   (f) Improved wheel bearing grease and bearing preload retention means have also 
been introduced on some recent airplanes to increase wheel bearing longevity in the severe 
landing gear system environments and account for longer tire lives/ increased intervals between 
tire changes and inspections.  Bearing wheel grease recommendations are usually specified in 
wheel and brake supplier CMMs.  Intermixing of bearing cups/rollers/cones from different 
bearing manufacturers is not recommended on some large transport category airplane wheels due 
to different roller end scoring resistance capabilities and other often subtle differences. 
 
 c. Procedures/Method of Compliance.  Due to the unique and critical nature of wheel, and 
wheel and brake designs, and historical airplane and personnel safety problems that have been 
experienced, compliance should only be approved upon successful completion of all applicable 
tests.  We recommend guidance be solicited from the original wheel and brake supplier(s) (e.g., 
technical standard order authorization (TSOA) or letter of design approval (LODA) holder) on 
any replacement part(s) to assure that continued airworthiness is not degraded. 
 
54. Tires - § 25.733. [Reserved] 
 
55. Brakes - § 25.735. 
 
 a. References. 
 
  (1)  TSO-C135a “Transport Airplane Wheels and Wheel and Brake Assemblies,” dated 
July 1, 2009. 
 
  (2) AC 25-22, “Certification of Transport Airplane Mechanical Systems,” dated March 
14, 2000.  
 
  (3) AC 25.735-1, “Braking and Braking Systems Certification Tests and Analysis,” 
dated April 10, 2002. 
 
 b. Explanation. 
 
  (1) Background.   
 
   (a) The original objective of § 25.735 (formerly § 4b.337) developed from a study 
to define a reasonable brake life for operational landings.  This element is still retained in current 
§ 25.735(f)(1), which requires substantiation that the wheel, brake, and tire assembly have the 
ability to absorb the energy resulting from an operational landing stop at maximum landing 
weight.  Compliance with this requirement is shown through dynamometer testing.   
 
   (b) It later became evident that a rejected takeoff could be critical in determining 
overall brake capability, and the maximum RTO energy absorption capability by the brakes 
could limit the aircraft maximum allowable gross weight for dispatch. 
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   (c) Investigation of an RTO overrun accident, in which 80 percent of the brakes 
on the subject airplane were at or very near their completely worn state, brought about the need 
to consider the effect of brake wear state on:  1) energy absorption capability, and 2) stopping 
capability.  As a result, the FAA issued a series of specific airworthiness directives for the   
existing fleet of transport category airplanes to establish brake wear limits such that the brakes 
would be capable of absorbing a maximum energy absorption RTO in the fully worn state.  The 
FAA also initiated rulemaking to address energy absorption capability and stopping distance 
with fully worn brake for future airplane types.  The resulting rule, Amendment 25-92, added: 
 
    1 A requirement for the maximum rejected takeoff kinetic energy capacity 
rating of the aircraft brakes to be determined with the brakes at 100 percent of the allowable 
wear limit; 
 
    2 A new requirement for the maximum kinetic energy rejected takeoff 
flight test demonstration to be conducted using brakes that have not more than 10 percent of their 
allowable wear range remaining; and 
 
    3 A general performance requirement under § 25.101(i) that requires the 
accelerate-stop and landing distances of §§ 25.109 and 25.125, respectively, to be determined 
with all wheel brake assemblies at the fully worn limit of their allowable wear range.  
  
   (d) ACs 25-22 and 25.735-1 provide guidance and policy information on how to 
show compliance with § 25.735.   
 
Additional information is provided in the following paragraphs pertaining to flight test 
evaluations performed in connection with showing compliance.  
 
  (2) Brake controls (§ 25.735(c)).  General brake control force and operation should be 
noted throughout the flight test program to determine that they are satisfactory. 
 
  (3) Brake control valves.  The brake valves in the normal brake system should allow 
the pilots to modulate pressure to the brakes.  The foregoing provision need not necessarily apply 
to an alternate or emergency brake system, although obviously such a provision would be 
desirable.  Flight tests should be conducted to determine that the normal and alternate/emergency 
brake systems fulfill the requirements of § 25.231. 
 
  (4)  Parking brake (§ 25.735(d)).  A demonstration should be made to determine that 
sufficient braking is provided with the parking brake to prevent the airplane from rolling on a 
paved, dry, level runway (or any suitable level hard surface) while maximum takeoff power or 
thrust is applied on the most critical engine and up to maximum ground idle power or thrust is 
applied to all other engines.  The airplane should be loaded to the maximum ramp weight at aft 
c.g. (or a weight-c.g. combination that prevents the wheels from sliding).  In the case of 
propeller-driven airplanes, the effects of propeller wash and engine/propeller torque should also 
be considered in determining the critical engine.  Because the resultant thrust vector can be at an 
angle to a propeller’s axis of rotation, one engine/propeller may be more critical than its 
counterpart on the opposite wing, particularly if all propellers turn in the same direction. 
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  (5) Wheel Fuse Plugs. 
 
   (a) The hazardous condition of exploding tires and wheels associated with high 
energy emergency stopping conditions has been greatly alleviated by the installation of wheel 
fuse plugs.  These plugs relieve the tire pressure when the wheel temperatures approach a 
dangerous limit.  The effectiveness of these plugs in preventing hazardous tire blowouts should 
be demonstrated during an RTO test where the brake energy to be absorbed exceeds the 
maximum landing energy, but not the RTO energy, and the fuse plug releases, thereby deflating 
the tire(s) before blowout. 
 
   (b) An improperly designed blowout plug that allows premature or unwanted 
release of tire pressure during takeoff or landing could also constitute a hazardous condition.  
Such a situation would most probably arise during a takeoff from a quick turn-around type of 
airline operation.  Fuse plug integrity should be demonstrated by conducting a maximum landing 
brake energy test, which should not result in a fuse plug release. 
 
   (c) Most turbojet transport airplanes have been able to demonstrate wheel blowout 
plug integrity at a maximum energy level in accordance with the procedures outlined in this 
section.  More restrictive operational limitations (e.g., runway slope and tailwind values) have 
been imposed to stay within this maximum energy level demonstrated for wheel blowout plug 
integrity.  With the advent of requests to increase the maximum landing weights, and to 
eliminate these restrictive operational limits, it has been considered acceptable to remove the 
pertinent restrictions and operational limitations and substitute in their place a chase-around 
chart as a limitation in the AFM.  This chart will permit determining whether or not a critical 
energy level has been exceeded for the operating conditions of altitude, temperature, runway 
slope, tailwind, and landing weight.  When the critical value is exceeded, a statement should be 
placed in the limitations section of the AFM to require that following a landing under such 
operating conditions, the airplane must remain on the ground a certain length of time prior to 
taxiing out for takeoff.  This length of time will be the time to reach peak wheel temperatures 
(appropriate to the blowout plug location), plus 15 minutes.  In lieu of the AFM fuse plug 
limitation chart, an alternate method for determining limit operational landing energy, such as a 
brake temperature limit, can be considered for approval. 
 
   (d) The wear level of the brakes used for the chase-around chart discussed in the 
preceding paragraph should be selected by the applicant.  Service experience indicates that the 
conservatism contained in the method of determining the turnaround time limits is adequate to 
allow these limits to be determined using new brakes.  
 
   (e) In the case where it is possible to demonstrate wheel blowout plug integrity at 
a maximum energy level in accordance with the procedures in this section and without imposing 
certain restrictions on the operational limitations (e.g., runway slope and tailwind values), it is 
not considered necessary to incorporate the chase-around chart and pertinent statement in the 
limitations section of the AFM.  Where restrictions are necessary, a pertinent statement and 
reference to the chase-around chart could be included in the limitations section of the AFM. 
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  (6) Replacement and Modified Brakes. 
 
   (a) In order to establish aircraft landing and RTO certification performance levels 
for a replacement brake or a modified brake, measured accelerate-stop tests, and functional flight 
tests (landing distance), may be required, depending upon an evaluation of the individual merits 
of each brake system change.  The type and magnitude of flight tests required will depend on 
whether or not a requested change involves a corresponding change of heat sink and/or torque 
requirements of the original certificated brake.  A review of the change by the cognizant aircraft 
certification office (ACO) for the type certificate holder is necessary, since original landing gear 
designs are based on structural analysis, which could be adversely affected by a brake system 
change.  In addition, such tests will also depend on whether or not an improvement in the FAA 
certificated performance is desired by the applicant. 
 
   (b) Changes to the friction couple elements (rotors and stators) are generally 
considered to be a major change, requiring the testing described in paragraph 55c(1), unless it 
can be shown that the change cannot affect the airplane stopping performance, brake energy 
absorption characteristics, or continued airworthiness.  Historically, continued airworthiness 
considerations include such items as landing gear system/airplane vibration control, braking feel, 
landing gear system compatibilities etc. 
 
   (c) Changes to a brake by a manufacturer other than the original TSO holder 
might be considered to be a minor change, as long as the changes are not to the friction couple 
elements, and the proposed change(s) cannot affect the airplane stopping performance, brake 
energy absorption, vibration, and/or thermal control characteristics, and continued airworthiness 
of the airplane.  In certain circumstances, the change to a steel rotor by a manufacturer other than 
the original TSO holder may be considered to be a minor change, as discussed in paragraph 
55c(5)(b). 
 
 c. Procedures.  The extent of the flight test requirements, except new airplane certification, 
may vary depending upon an evaluation of the individual merits of each airplane brake system 
change, and whether or not an increase in the FAA certificated performance level is desired by 
the applicant.  Past experience has proven that dynamometer tests alone are not considered 
adequate in determining compliance with this requirement.  Flight test procedures for new, 
replacement, and modified brakes are categorized as follows: 
 
  (1) New airplane certification -- complete new design where no airplane performance 
data exist. 
 
   (a) Tests required. 
 
    1 For complete analysis, at least six rejected takeoffs and six landings will 
normally be necessary. 
 
     (aa) Six landings should be conducted on the same wheels, tires, and 
brakes. 
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     (bb) All tests should be conducted with engines trimmed to the high side 
of the normal idle range (if applicable). 
 
     (cc) For airplanes whose certification basis includes Amendment 25-92, 
§ 25.101(i) requires the stopping distance portions of the accelerate-stop and landing distances to 
be determined with all the aircraft brake assemblies in the fully worn state.  An acceptable means 
of compliance with this requirement is to accomplish the flight test braking tests with less than 
fully worn brakes, and then correct the test results using dynamometer test data determined with 
fully worn brakes.  It should be substantiated that the dynamometer test methodology employed, 
and analytical modeling of the airplane/runway system, are representative of actual conditions.  
 
    2 Additional tests may be necessary for each airplane configuration change 
(i.e., takeoff and/or landing flaps, nose wheel brakes, antiskid devices inoperative, deactivation 
of wheel brakes, etc.). 
 
    3 Brake system response evaluation including braking during taxiing (see 
paragraph 30b(2)(i).  
 
    4 Parking brake adequacy (see paragraph 55c(1)(c)). 
 
    5 Alternate braking system stops. 
 
    6 Wheel fuse plug evaluation (see paragraph 55c(7)). 
 
    7 Antiskid compatibility on a wet runway. 
 
    8 Automatic gear retraction braking system on airplanes so equipped. 
 
   (b) Maximum RTO energy will be established by conducting an RTO at the 
maximum brake energy level for which the airplane will be certified.  Fires on or around the 
landing gear are acceptable if the fires can be allowed to burn during the first 5 minutes after the 
airplane comes to a stop, before extinguishers are required to maintain the safety of the airplane.  
The condition of the tires, wheels, and brakes can be such that the airplane would require 
maintenance prior to removal from the runway.  A deceleration rate should be maintained during 
this test that is consistent with the values used by performance scheduling.  Tire or wheel 
explosions are not acceptable.  Tire fuse plug releases may occur late in the RTO run, provided 
directional control is not compromised.  The resulting distance (with fuse plugs blown during the 
RTO run) is to be included in the data used to establish AFM performance, only if it is longer 
than the data obtained with normal full braking configuration. 
 
    1 For airplanes whose certification basis includes Amendment 25-92, the 
maximum brake energy absorption level must be determined, per § 25.101(i), for an airplane 
with all wheel brake assemblies in the fully worn state.  In accordance with § 25.109(i), the flight 
test maximum energy RTO demonstration must be accomplished with all brake assemblies 
within 10 percent of their allowable wear limit (i.e., at least 90 percent worn).  Dynamometer 
testing, when used to extend the flight test results to determine the maximum energy absorption 
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capability of the brakes in the fully worn state (i.e., 100 percent worn), should be substantiated as 
being representative of actual airplane and runway conditions.  The fully worn limit is defined as 
the amount of wear allowed before the brake needs to be removed from the airplane for overhaul.  
The allowable wear should be defined in terms of a linear dimension in the axial direction, which 
is typically determined by measuring the wear pin extension.  
 
    2 The maximum energy RTO demonstration should be preceded by at least 
a three mile taxi, with at least three intermediate full stops, using normal braking and with all 
engines operating. 
 
    3 Landings are not an acceptable means to conduct maximum energy RTO 
demonstrations.  Though permitted in the past, service experience has shown that methods used 
to predict brake and tire temperature increases that would have occurred during taxi and 
acceleration were not able to account accurately for the associated energy increments. 
 
   (c) The ability of the parking brake to prevent the airplane from rolling should be 
demonstrated on a paved, dry, level runway (or any suitable level hard surface) with takeoff 
power or thrust applied on the critical engine and up to maximum ground idle power or thrust is 
applied to all other engines using the following test procedure: 
 
    1 The airplane should be loaded to its maximum takeoff weight (or a 
weight-c.g. combination that prevents the wheels from sliding) with the tires inflated to the 
normal pressure for that weight, the flaps should be retracted, the control surfaces centered, and 
the parking brake set. 
 
    2 Apply takeoff power or thrust to the critical engine with the other 
engine(s) at maximum ground idle power or thrust. 
 
    3 Compliance with the requirements of § 25.735(d) is shown if the wheels 
do not rotate; this is best observed by painting a white radial stripe(s) on the wheels.  The 
airplane may skip, tire tread may shear, or the tire may slip on the wheel, but the parking brake 
must prevent the wheels from rotating.  Skidding of the tires is acceptable. 
 
  (2) Addition of New or Modified Brake Design. 
 
   (a) This item concerns the addition of a new or highly modified brake design to an 
existing type certificated airplane for which FAA-approved braking performance test data exists, 
either for performance credit, or to the existing performance level.  A highly modified brake is 
defined as one that contains new or modified parts that may cause a significant variance in brake 
kinetic energy absorption characteristics, airplane stopping performance, or continued 
airworthiness of the airplane.  Examples are:  significant change in rotor and/or stator lining 
compound or area, number of stages, piston area, reduction in heat sink weight, changes in total 
number of friction faces and elements, change in brake geometry (friction, radius, friction area), 
fuse plug relocation or change in release temperature, heat shield changes that would affect the 
temperature profile of the wheel and/or fuse plugs, or seal changes. 
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   (b) Tests Required. 
 
    1 For improved performance, all applicable portions of paragraph 55c(1). 
 
    2 For equivalent performance, a sufficient number of conditions to verify 
the existing approved performance levels (RTO and landing).  Consideration should be given to 
verification of fuse plugs, performance verification at appropriate energy levels, and 
configuration differences, including antiskid on and off.  Taxi tests to ensure that ground 
handling, maneuvering, and brake sensitivity are satisfactory should be conducted.  At least two 
braking stops, one at heavy weight and one at light weight, should be conducted on a wet runway 
to verify brake and antiskid system compatibility. 
 
    3 For extended performance, a sufficient number of conditions to define the 
extended line and determine equivalency to the existing performance levels.  Consideration 
should be given to the items in paragraph 2, above. 
 
   (c) Definitions. 
 
    1 Improved performance implies an increase in the mu versus energy level 
for the desired operation(s) and may be requested for landing, RTO’s, or a specific configuration 
such as antiskid “on” only. 
 
    2 Equivalent performance implies that sufficient data will be obtained to 
verify that the performance level for the desired change is equal to or better than the existing 
performance levels.  The change may be for the purpose of changing the c.g. envelope, or for 
airplane configuration changes (such as flap angles), and may apply to specific operations (such 
as landings). 
 
    3 Extended performance implies that the existing certification mu versus 
energy line will be extended to establish the braking force level for a proposed change, such as 
gross weight or the maximum desired energy level, and may be applied to a specific operation 
(such as landing only). 
 
  (3) Addition of new, or changes to, antiskid systems that may affect airplane 
performance (e.g., new antiskid system, or a change from coupled to individual wheel control).  
A sufficient number of airplane performance tests and/or functional tests should be conducted to 
verify existing approved performance antiskid “on” levels.  In the event an increase of braking 
performance is desired, full airplane performance testing is required. 
 
  (4) Fuse plug modification.  
 
   (a) Airplane tests for changes to the fuse plugs should be evaluated on a case-by-
case basis.  While airplane tests are required to establish the initial fuse-plug-no-melt energy, 
minor changes to fuse plugs or wheel designs may be validated by a back-to-back dynamometer 
comparison of old versus new designs, provided it is acceptable to the cognizant FAA ACO. 
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   (b) Airplane tests should be conducted when a significant change of wheel design 
and/or redesign or relocation of thermal or pressure fuse plugs is made. 
 
    1 One airplane test should be conducted to show that the fuse plugs will 
release when excessive energies are absorbed. 
 
    2 Another airplane test should be conducted to verify the maximum kinetic 
energy at which fuse plugs will not release (fuse plug substantiation).  Dynamometer tests are 
not considered adequate for this test. 
 
  (5) Minor/Major Changes. 
 
   (a) Minor brake changes that do not affect airplane braking performance may 
require functional landings.  This may be required to verify airplane-pilot-brake-antiskid 
combination compatibility.  Normally, five non-instrumented, functional landings are considered 
sufficient to verify this compatibility.  Examples of minor changes might include structural 
improvements (increased fatigue life), adjuster/retractor modifications, material and process 
specifications changes for structural components, and modified heat-sink relief slots (steel 
brakes).  Examples of other minor changes that do not require functional landings are 
paint/corrosion changes, changes to bleed ports or lube fittings, revised over inflation devices, 
metal repair, and salvage procedure. 
 
   (b)  Changes to heat sink friction couple elements are to be considered major 
changes, unless the applicant can provide evidence that changes are minor.  Based upon 
experience, thicker friction material or heavier heatsink elements are usually acceptable as minor 
changes in steel brakes.  Thicker or heavier heat sink elements in carbon brakes may require 
additional laboratory and/or airplane testing to assess brake performances and continued 
airworthiness.  Major changes are subject to extensive airplane testing, unless it can be shown 
that the change cannot affect the airplane stopping performance, brake energy absorption 
characteristics, and continued airworthiness.  In this regard, the original manufacturer of the 
wheel/brake assembly, who holds the TSO authorization and the type certificate holder, who is 
knowledgeable with respect to such items as landing gear design assumptions and airplane 
braking system history, may possess data sufficient to show that such changes could be 
considered to be minor (i.e., performance would not be affected).  In contrast, an applicant other 
than the original manufacturer who wishes to produce replacement rotors or stators may not have 
access to or have established developmental or other test data required to show that performance, 
braking energy capacities, braking system compatibilities, or overall continued airworthiness 
safeguards have been addressed.  Due to the complex nature of the friction surfaces and airplane 
braking system interfaces, proposed replacement stators/rotors by an applicant other than the 
original manufacturer(s) should always be considered a major change.   
 
   (c) It is considered very difficult to determine 100 percent identicality.  This is 
particularly true for brake friction rubbing components (e.g., linings in cups, linings sintered to 
plates, steels used in steel brakes, and carbon discs in carbon brakes).  A finding of equivalence 
based upon physical documentation and dynamometer testing may not be possible or practical 
due to friction material complexities and/or the extent of dynamometer testing required. 
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   (d) Due to the complexities associated with aircraft brake friction couples, 
industry and authorities have generally discouraged mixing of friction components from various 
suppliers within the same brake or mixing wheel and brake assemblies from different 
manufacturers on the same airplane.  Typically, the manufacturers of large transport category 
airplanes have confined the use of specific wheel and brake supplier’s assemblies to specific 
airplanes through approved equipment lists.  While multiple wheel and brake suppliers (e.g., 
multiple original TSO holders) are often selected to provide wheel and brake assemblies on a 
specific airplane model, intermixing of wheel and brake assemblies has been discouraged to 
avoid potential problems such as unequal energy sharing; unfavorable dynamic cross coupling 
between brakes, landing gear, and the airplane; degradation of vibration and/or thermal controls; 
unique brake control system tuning requirements for each wheel and brake assembly, etc.  
 
   (e) The FAA has, however, approved the use of replacement steel rotors.  The 
following protocol for steel rotor equivalency findings has been updated to include brake wear 
and wear pattern assessments to assure that the worn brake capability of the original 
manufacturer’s wheel and brake assembly is not degraded by a replacement steel rotor(s).  The 
following criteria and evaluations represent protocol for replacement steel rotors to be 
considered as a minor change:  
 
    1 A very close correlation between the original part and the proposed 
replacement part;  
 
    2 Considerable and satisfactory prior manufacturing and in-service 
experience with a similar replacement part;  
 
    3 A reasonable plan of test for completion of the dynamometer portion of 
the test program;  
 
    4 Successful completion of the dynamometer testing; and 
 
    5 As a minimum, successful completion of a series of functional landings 
on the airplane. 
 
   (f) The necessity of conducting maximum energy RTO testing and other brake 
system tests on the airplane will depend upon the outcome of the above evaluations and worn 
brake RTO airplane test experiences (if applicable). 
 
   (g) If intermixing of replacement steel rotors with the original manufacturer’s 
steel rotors is proposed, the applicant should propose an airplane test evaluation plan to the FAA 
that provides data to guide a worn brake rejected-takeoff equivalency assessment.  If the 
applicant cannot provide evidence on similar overall wear and wear patterns from the new to 
worn condition for the proposed mixing configuration(s), intermixing will not be permitted in 
order to assure that the worn brake rejected-takeoff rating and approved wear limit of the 
original TSO holders wheel and brake assembly is not jeopardized. 
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   (h)  The dynamometer test plan, and, if applicable, the overall wear and wear 
pattern test plan, should include: 
 
    1 TSO Minimum Standard Performance Demonstration.  The wheel and 
brake assembly containing the applicant’s proposed steel rotor configuration should successfully 
demonstrate compliance with the braking and structural tests of the applicable TSO, and 
 
    2 Compliance with: 
 
     (aa) The airplane-manufacturer-specified requirements, or 
 
     (bb) The alternate procedures specified below: 
 
   (i) Alternate Procedures (steel rotors only). 
 
    1 Energy and Torque Capacity Tests.  A series of tests (not only one) may 
be necessary to demonstrate, in back-to-back tests, that brake energy absorption and torque and 
pressure vs. time profiles are equivalent.  All friction components and structures should be in the 
new condition to obtain credit for this test.  If rebuilt or in-service components other than these 
fail during testing, it should be realized that the results of the test(s) may be questionable.  
Suspect tests will be carefully reviewed by the FAA, and may require retesting.  Prior to test, the 
applicant should carefully document wheel hardness and wheel drive, torque tube spline, 
piston/bushing assembly conditions to assure comparable test articles are being used.  The same 
tire size and ply rating, manufacturer, tire condition, radial load, and rolling radius should be 
used in each test.  Test machines and test conditions should be consistent from test to test, 
including test brake, wheel and tire break-in stop histories, brake pressure onset rates (pound-
force per square inch gauge per second) (psig/sec), maximum pressures, initial brakes-on-speeds, 
flywheel inertias, etc., to assure consistent test control.  Artificial cooling is not permitted during 
or subsequent to the test until wheel and piston housing temperatures have peaked. 
 
    2 The initial kinetic energy (KE) level for this series of tests will be at the 
discretion of the applicant.  For each succeeding run, the KE will be increased by approximately 
5 percent over the previous run, until the ultimate KE level is determined (i.e., points at which 
pistons are about to exit bores or flywheel deceleration falls below 3 ft/sec2 (½ of the TSO RTO 
minimum average deceleration requirement)).  The deceleration reported by the applicant should 
be based upon distance (and not time) in accordance with the following formula: 
 
Distance Averaged Deceleration =  
 
 ((Initial brakes-on speed)2 - (Final brakes-on-speed)2 ) / (2 * (braked flywheel distance)) 
 
     (aa) A minimum of two runs at this ultimate energy level should be 
conducted on the original manufacturer’s wheel and brake assembly for baselines.  These test 
runs should show similar results.  Maximum braking force pressure should be applied during the 
tests.  Fuse plug releases in any tests should demonstrate safe release of approved nitrogen-air 
mixtures. 
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     (bb) A minimum of two test runs at the ultimate energy level should then 
be conducted on the applicant’s proposed wheel and brake assembly (i.e., a back-to-back 
demonstration of the two manufacturers’ brakes).  Tests should show similar brake energy 
absorption, torque, and thermal performance capabilities, and torque and pressure versus time 
profiles, while demonstrating sealing and structural integrity comparable to the original 
manufacturer’s wheel and brake assembly. 
 
    3 Worn Brake RTO Capability.  Worn brake RTO capability for the 
proposed wheel and brake assembly with steel rotor replacement configuration(s), and at the 
wear pin limit(s) proposed by the applicant, should be established during dynamometer test(s).  
The test brake energy absorption criteria, torque performance, and pass/fail requirements should 
be requested of the airplane manufacturer to provide supporting evidence that the worn brake 
RTO capability is equivalent to that achieved with the original TSO holder’s wheel and brake 
assembly(ies).  If unavailable, the applicant should propose a worn brake RTO test plan similar 
to that in paragraph 55c(1) for new brakes.  The applicant should also propose to the FAA the 
method which will be followed by the applicant to verify that the worn brake RTO capability of 
in-service worn brakes with replacement rotors is equivalent to the capability established in 
initial dynamometer test(s) in accordance with paragraph 55c(1)(b)1 of this AC. 
 
    4 Intermixing of steel rotor assemblies produced by two manufacturers will 
not be allowed until it can be demonstrated that wear patterns of the intermixed assembly(ies), 
through a determined number of in-service tours, does not jeopardize the worn brake RTO 
capabilities of the original or the replacement wheel and brake assemblies.  Since dynamometer 
testing is generally impractical, the applicant should forward to the FAA an in-service plan to 
survey wear and wear patterns from a sampling of worn in-service brakes containing steel rollers 
from the original manufacturer only, from the applicant only, and from an intermix brake(s).  
Since the original manufacturer’s brake often contains second, and possibly third tour reground 
steel rotors, at least two tours of in-service evaluation with replacement steel rotors may be 
required to assess equivalence.  This data will provide guidance for approved worn brake RTO 
wear limits for brakes containing replacement rotors. 
 
    5 Torque/pressure ratio profiles.  A torque/pressure ratio test plan and tests 
are required to demonstrate equivalent gain performances over a range of test speeds and test 
pressures.  The test article conditions, break-in conditions and procedures, test speed range, and 
test pressure matrix, used to evaluate both the original and applicant wheel and brake assemblies, 
should be the same with tests conducted in the same order.  The results of these tests will provide 
guidance for braking system control compatibility assessments. 
 
    6 As a minimum, the five functional landings described in paragraph 
55c(5)(a), above, are also a required part of this approval procedure. 
 
    7 Continued Airworthiness.  Past history with friction material couples has 
indicated the necessity of ongoing monitoring (by dynamometer test) of RTO capability to assure 
that the AFM limitations are not exceeded over the life of airplane programs.  For larger 
transport category commercial airplanes, it has been shown that these monitoring plans have 
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complemented the detection and correction of unacceptable deviations.  The applicant should 
provide the FAA with a quality plan to demonstrate that the RTO capability of the friction 
couple is maintained with replacement steel rotors over time. 
 
  (6) Auto-braking.  The following are required for auto-braking installations based on 
function, non-hazard, and non-interference on airplanes for which performance without auto-
braking has been determined: 
 
   (a) The system design should be evaluated for integrity and non-hazard, including 
the probability and consequence of insidious failure of critical components.  No single failure 
may compromise non-automatic braking of the airplane. 
 
   (b) Positive indication of whether the system is operative or inoperative should be 
provided. 
 
   (c) For each auto-brake setting for which approval is desired, the ground roll 
distance from touchdown to stop should be determined for the landing weights and altitudes 
within the envelope for which approval is desired.  In determining ground roll distance, the 
performance should be established without reverse thrust, and any adverse effect upon 
performance associated with the use of reverse thrust should be established and accounted for.  
Repeatability of initial application should be shown by comparing the onset of braking for each 
of the range of settings.  Landing ground roll distance data determined as prescribed herein 
should be presented in the performance information section of the AFM. 
 
   (d) If the auto-braking system is to be approved for wet runways, auto-brake 
compatibility on a wet runway should be demonstrated.  These tests may be limited to the 
highest auto-brake setting, where antiskid activity is expected to occur throughout the stop, and a 
single lower setting, where antiskid activity is expected to occur for only a portion of the stop.  
AFM stopping distances for other settings can be computed based on predicted wet-runway 
friction coefficients and do not require demonstrations on wet runways of all auto-brake settings.  
Landing ground roll distance data determined on a wet runway should also be presented in the 
AFM for all operating modes of the system.  This information is considered necessary so that the 
pilot can readily compare the automatic brake stopping distance and the actual runway length 
available, so as to assess the effect of the use of the automatic braking system on the runway 
margin provided by the factored field length. 
 
   (e) Automatic braking systems that are to be approved for use during rejected 
takeoff conditions should provide only a single brake setting that provides maximum braking.  In 
the event that automatic brakes result in a longer rejected takeoff distance than manual brakes, 
the AFM should present the longer rejected takeoff distance. 
 
   (f) Procedures describing how the automatic braking system was used during the 
FAA evaluation and in determining the landing ground roll distance of paragraph 55c(6)(c) 
should be presented in the AFM. 
 
  (7) Wheel Fuse Plug Integrity. 
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   (a) Wheel fuse plug integrity should be substantiated during braking tests where 
the energy level simulates the maximum landing energy.  It should be demonstrated that the 
wheel fuse plugs will remain intact, and that unwanted releases do not occur.  One acceptable 
method to determine this is as follows: 
 
    1 Set engine idle power or thrust at the maximum value specified (if 
applicable). 
 
    2 Taxi at least three miles (normal braking, at least three intermediate stops, 
and all engines operating). 
 
    3 Conduct accelerate-stop test at maximum landing energy, maintaining the 
deceleration rate consistent with the values used to determine performance distance. 
 
    4 Taxi at least three miles (normal braking, at least three intermediate stops, 
and all engines operating). 
 
    5 Park in an area so as to minimize wind effects until it is assured that fuse 
plug temperatures have peaked and that no plugs have released. 
 
   (b) In lieu of simulating the maximum kinetic energy landing during an 
accelerate-stop test, an actual landing and quick turn-around may be performed; however, 
caution should be exercised in order to prevent jeopardizing the safety of the flightcrew and 
airplane if the wheel plugs release right after liftoff, requiring a landing to be made with some 
flat tires.  The following elements should be included in the tests: 
 
    1 Set engine idle power or thrust at maximum value specified (if 
applicable). 
 
    2 Conduct a landing stop at maximum landing energy, maintaining the 
deceleration rate consistent with the values used to determine stopping performance distance. 
 
    3 Taxi to the ramp (three miles minimum with normal braking, at least three 
intermediate stops, and all engines operating). 
 
    4 Stop at the ramp.  Proceed immediately to taxi for takeoff. 
 
    5 Taxi for takeoff (three miles minimum with normal braking, at least three 
intermediate stops, and all engines operating). 
 
    6 Park in an area so as to minimize wind effects until it is assured that fuse 
plug temperatures have peaked and that no plugs have released. 
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   (c) Fuse plug protection of wheels and tires should be demonstrated to show that 
the fuse plugs will release when excessive energies are absorbed.  Normally, this will occur 
during RTO performance tests. 
 
56. Skis - § 25.737. [Reserved] 
 
 

Section 5.  Floats and Hulls 
 
 
57. - 59. [Reserved] 
  

 
Section 6.  Personnel and Cargo Accommodations 

 
 
60. - 61. [Reserved] 
 
62. Pilot Compartment View - § 25.773. 
 
 a. Explanation.  (Reserved.) 
 
 b. Procedures.  For detailed guidance on complying with pilot compartment view 
requirements, refer to AC 25.773-1, “Pilot Compartment View for Transport Category 
Airplanes,” dated January 8, 1993. 
 
63. - 72. [Reserved] 
 
 

Section 7.  Emergency Provisions 
 
 
73. Ditching - § 25.801.  
 
 a. Explanation.  If certification with ditching provisions is requested, § 25.801 requires 
investigation of the probable behavior of the airplane in a water landing.  As stated in the 
regulation, this investigation can be accomplished by model testing or by comparison with 
airplanes of similar configuration for which the ditching characteristics are known.  Applicants 
should also demonstrate that their ditching parameters used to show compliance with § 25.801 
can be attained without the use of exceptional piloting skill, alertness, or strength. 
 
 b Procedures.  None.  
 
74. Emergency Egress Assist Means and Escape Routes - § 25.810. 
 
 a. Explanation.   
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  (1) Installation of slip-resistant escape route.  (See §25.810(c), formerly § 25.803(e).)  
See AC 25-17A, “Transport Airplane Cabin Interiors Crashworthiness Handbook,” dated May 
18, 2009, § 25.803(e), for guidance regarding slip resistant material. 
 
  (2) The effect of the slip-resistant surfaces on airplane performance, flight 
characteristics, and buffet should be evaluated.  If there is a significant effect, this effect should 
be accounted for.  
 
 b. Procedures.  None. 
 
75. - 83. [Reserved] 
 

 
Section 8.  Ventilation and Heating 

 
 
84. Ventilation - § 25.831. 
 
 a. Explanation. 
 
  (1) This requirement deals with minimum ventilation requirements for each occupant 
of the airplane, control of the ventilating air, accumulation and evacuation of smoke and harmful 
or hazardous concentrations of gases or vapors, and failure conditions of the ventilation system.  
Specific quantities of fresh air along with carbon monoxide and carbon dioxide concentration 
limits are specified in the rule.  AC 25-20, “Pressurization, Ventilation, and Oxygen Systems 
Assessment for Subsonic Flight Including High Altitude Operations,” dated September 10, 1996, 
provides guidance for methods of showing compliance with the ventilation requirements.  
Reference should also be made to paragraphs 137 and 165 of this AC dealing with Exhaust 
Systems, § 25.1121, and Fire Extinguishing Agents, § 25.1197, respectively.   
 
  (2) The objective of the inflight smoke evacuation test is to confirm that the flightcrew 
emergency procedures and the ventilation system are capable of handling heavy smoke, and to 
show that when using the emergency procedures, the smoke will dissipate at a reasonable rate.  
This is a quantitative and qualitative evaluation.  
 
 b. Procedures.   
 
  (1) Flight testing should be conducted to ensure the amount of ventilation air provided 
meets the requirements specified and the flightcrew is able to accomplish their duties without 
undue fatigue and discomfort.  Ventilation system controls in the flight deck should be 
demonstrated to perform their intended function. 
 
  (2) The passenger and crew compartment should be monitored for the presence of 
carbon monoxide.  Various flight and equipment configurations should be tested.  A carbon 
monoxide test kit is normally used for this evaluation. 
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  (3) Inflight smoke evacuation testing should be conducted in accordance with AC 25-
9A, “Smoke Detection, Penetration, and Evacuation Tests and Related Flight Manual Emergency 
Procedures,” dated January 6, 1994. 
 
85. Cabin Ozone Concentration - § 25.832.  [Reserved] 
 
86. Combustion Heating Systems - § 25.833.  [Reserved] 
  

 
Section 9.  Pressurization 

 
 
87. Pressurized Cabins - § 25.841. 
 
 a. Explanation.   
 
  (1) Section 25.841(a) specifies cabin pressure altitude limits, as a function of the 
external pressure altitude, for cabins and compartments intended to be occupied.  AC 25-20 
provides additional guidance for pressurized cabins.  These cabin pressure altitude limits, to be 
demonstrated by flight testing, are: 
 
   (a) Not more than 8,000 ft., at the maximum operating altitude of the airplane, for 
normal operation of the pressurization system. 
 
   (b) For airplanes to be operated above 25,000 ft., the airplane must be able to 
maintain a cabin pressure altitude of not more than 15,000 ft. in the event of any reasonably 
probable failure or malfunction in the pressurization system. 
 
  (2) The 8,000 foot limit on cabin pressure altitude applies during normal operations at 
all altitudes, up to the maximum operating altitude of the airplane.  For airplanes operating at 
airports with altitudes higher than 8,000 feet (see paragraph 87a(3)), an equivalent level of safety 
finding must be made in accordance with § 21.21(b)(1) to allow the higher than 8,000 foot cabin 
pressure altitude needed for these operations. 
 
  (3) Though not addressed by § 25.841, airplanes may incorporate a “high altitude 
mode” to permit takeoff and landing at airports above 8,000 ft.  For takeoff and landing altitudes 
above 8,000 ft., the cabin pressure limits to be demonstrated by flight testing are: 
 
   (a) Prior to beginning a descent into a high altitude airport, not more than 8,000 ft. 
 
   (b) During a descent into or climb out of a high altitude airport, not more than 
15,000 ft. 
 
   (c) After a takeoff from a high altitude airport and after the cabin pressure altitude 
decreases to 8,000 ft., not more than 8,000 ft. 
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  (4) Section 25.841(b)(6) requires an aural or visual warning to the flightcrew when the 
cabin pressure altitude exceeds 10,000 ft.  The intent of this requirement is to warn the crew 
when a safe or preset cabin pressure altitude limit is exceeded.  However, complying with this 
regulation when operating at airports with altitudes higher than 10,000 feet (see paragraph 
87a(3)) would result in nuisance cabin pressure warnings. For systems that set the cabin pressure 
altitude warning limit above 10,000 feet for operations at high altitude airports, an equivalent 
level of safety finding must be made in accordance with § 21.21(b)(1).   
 
 b. Procedures.  It is recommended that the test airplane have the maximum allowable 
leakage rate permitted by the type design specifications.  If an airplane does not meet this 
criterion, it will be necessary to substantiate compliance by additional testing or analysis for the 
maximum leakage rate allowed by the type design. 
 
  (1) Normal Operating Conditions - 8,000 Ft. Cabin Pressure Altitude. 
 
   (a) With the pressurization system operating in its normal mode, verify that the 
cabin pressure altitude does not exceed 8,000 feet during climb, cruise, or descent at any altitude 
up to and including the maximum operating altitude for which the airplane is to be certificated. 
 
   (b) A stable condition should be held long enough to record any cyclic 
fluctuations in cabin pressure due to relief valve operation. 
 
  (2) Failure Conditions - 15,000 Ft. Cabin Pressure Altitude. 
 
   (a) The critical probable system failure condition should be identified.  The cabin 
pressure altitude warning system should be set to the high altitude side of its tolerance band or 
additional testing or analysis may be necessary for compliance.  If more than one system failure 
mode is determined to meet the “probable failure condition” criterion, the flight test should be 
conducted for each failure mode identified. 
 
   (b) The airplane should be stabilized in the cruise configuration at the maximum 
operating altitude it is to be certificated to, with the pressurization system operating in its normal 
mode. 
 
   (c) After initiating the critical failure to allow the cabin pressure altitude to 
increase, the flight test crew should immediately don their oxygen masks, but take no further 
corrective action until 17 seconds after the 10,000 ft. cabin pressure altitude warning activates.  
Emergency descent procedures should then be initiated and the descent continued to an altitude 
below 15,000 ft. 
 
   (d) The cabin pressure altitude should not exceed 15,000 ft. at any time during the 
test. 
 
  (3) High Altitude Takeoff Conditions (Greater than 8,000 Ft.). 
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   (a) The pressurization system should be placed in its high altitude mode.  It may 
be necessary to configure the oxygen system to prevent deployment of the oxygen masks at 
10,000 ft., if the system is so designed.  AFM procedures may need to be developed.  The same 
applies to high altitude landings above 10,000 ft. 
 
   (b) The cabin pressure altitude should not exceed the maximum allowable takeoff 
and landing altitude (within an acceptable tolerance) during an actual climb-out from a high 
altitude airport to the maximum operating altitude the airplane is to be certificated for, or during 
an inflight simulation of such a climb-out.  The simulation should commence the climb, from a 
starting altitude of 8,000 ft. or more, with the airplane unpressurized. 
 
   (c) The cabin pressure altitude should eventually decrease to 8,000 ft. and then 
not exceed 8,000 ft. for the duration of the test.  
 
  (4) High Altitude Landing Conditions (Greater than 8,000 Ft). 
 
   (a) The airplane should be stabilized in the cruise configuration prior to beginning 
a descent. 
 
   (b) The pressurization system should be placed in its high altitude mode. 
 
   (c) The cabin pressure altitude should not exceed the maximum allowable takeoff 
and landing altitude (within an acceptable tolerance) during the descent to an actual, or 
simulated, landing at a high altitude airport. 
 
88. Tests For Pressurized Cabins - § 25.843. 
 
 a. Explanation.   
 
  (1) Section 25.843(b)(3) requires flight testing to evaluate the performance of the 
pressurization system and all related sub-systems at maximum altitude and under the dynamic 
conditions of climbing and descending flight.  This testing substantiates the ability of the 
pressurization system to function correctly in stable and dynamic external pressure conditions. 
 
  (2) Section 25.843(b)(4) requires an investigation of the functionality of all doors and 
emergency exits after the flight test required by § 25.843(b)(3).  The concern is the potential for 
jamming caused by the variable relative positions of doors and fuselage structure during the 
pressurization/depressurization cycle. 
 
 b. Procedures.  The following tests may be initiated from an airport at any altitude within 
the airplane’s proposed takeoff limitations.  The pressurization system should be operated in its 
normal mode.  MMEL dispatch may be taken into consideration and additional testing required 
to verify MMEL configuration. 
 
  (1) Steady Climb/Descent.  The steady climb/descent pressurization system tests 
should be performed under conditions (i.e., weight, altitude, temperature, and configuration) that 
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will result in rates of climb/descent corresponding to the maximum attainable within the 
operating limitations of the airplane. 
 
   (a) After takeoff, maintain a stable, continuous climb to the maximum operating 
altitude for which the airplane will be certificated. 
 
   (b) Maintain that altitude until the cabin pressure altitude has stabilized.   
 
   (c) Initiate a steady, maximum rate of descent within the operating limitations of 
the airplane down to the airport. 
 
  (2) Stepped Climb/Descent.  The stepped climb/descent pressurization system tests 
should be performed under conditions (i.e., weight, altitude, temperature, and configuration) that 
will result in rates of climb/descent corresponding to the maximum attainable within the 
operating limitations of the airplane. 
 
   (a) After takeoff, initiate a stepped climb to the maximum operating altitude the 
airplane will be certificated to.  Step increments should be 5,000 to 7,500 ft.   
 
   (b) Maintain each level-off altitude long enough for the cabin pressure altitude to 
stabilize. 
 
   (c) Initiate a stepped descent from the maximum altitude allowing the cabin 
pressure altitude to stabilize at each level-off altitude.  Step increments should be 7,500 to 
10,000 ft. 
 
  (3) Positive Pressure Relief.  If two valves are provided, one should be deactivated for 
this test. 
 
   (a) After takeoff, climb to the operating altitude that provides maximum cabin 
differential pressure. 
 
   (b) Manually close the outflow valve, allowing the cabin differential pressure to 
increase. 
 
   (c) Verify the cabin pressure differential pressure warning functions properly. 
 
   (d) Verify that the relief valve functions and the maximum cabin differential 
pressure is not exceeded. 
 
  (4) Negative Pressure Relief/Emergency Descent.  If two valves are provided, 
deactivate one for this test. 
 
   (a) At cruise altitude, perform an emergency descent with the airplane in the 
critical condition for negative pressure on the fuselage. 
 

 181 



10/16/12  AC 25-7C 

 182 

   (b) Verify that the maximum negative differential pressure for the fuselage is not 
exceeded.  
 
  (5) Manual Cabin Pressure Control.  If manual means for pressure control are 
provided, these means should be evaluated under normal and emergency operations of the 
airplane and flight envelope. 
 
  (6) Testing of Doors and Exits.  
 
   (a) Prior to flight, all doors and exits should be checked for proper operation. 
 
   (b) After returning from a flight where the airplane is subjected to the maximum 
certificated altitude and cabin differential pressure, and immediately upon landing, all passenger 
doors and emergency exits should be opened.  There should be no change in the operating 
characteristics of any door or emergency exit relative to its pre-flight operation. 
 
 

Section 10.  Fire Protection  [Reserved] 
 

Section 11.  Miscellaneous  [Reserved] 
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Chapter 5 - Powerplant 
 
 

 Section 1.  General 
 
 
89. Installation - § 25.901.  [Reserved] 
 
90. Engines - § 25.903.   
 
 a. Engine Isolation - § 25.903(b).  
 
  (1) Explanation.  Approval of Engine Isolation Criteria - The powerplants, and all 
systems controlling or influencing the performance of the powerplants, must be arranged and 
isolated from each other to allow operation, in at least one configuration, so that a failure of any 
engine or any said system will not:  
 
   (a) Prevent the continued safe operation of the remaining engines; or 
 
   (b) Require immediate action by any crewmember for continued safe operation.  
 
  (2) Procedures.   
 
   (a) Automated control functions incorporated to reduce crew workload, which 
impact the engine operation and control, may require flight tests to demonstrate the effects of 
various simulated failures, including engine surging and single engine failures.  Failures in 
systems such as the auto-throttles, digital flight guidance computers, engine synchronizers, and 
electronic engine controls may need to be simulated to ensure that surging or a failure in one 
engine system will not hazardously affect control and operation of the remaining engine systems.  
Such failure simulations may include disruption of electrical power to selected control 
components, as well as simulated engine failures (throttle chops).  
 
   (b) The applicant should submit a comprehensive test plan detailing the test 
conditions and failure modes to be simulated.  Careful consideration should be given to 
conducting these tests at safe altitudes and airspeeds, since results of the failure simulations may 
not be entirely predictable.  Where possible, without compromising tests results, on-aircraft (i.e., 
installed engines) tests of this type should be accomplished on the ground. 
 
   (c) For propeller airplanes, when an automatic control system for simultaneous 
R.P.M. control of all propellers is installed, it should be shown by analysis, flight demonstration, 
or a combination of analysis and flight demonstration that no single failure or malfunction in this 
system or in an engine controlling this system will: 
 

 183 



10/16/12  AC 25-7C 

    1 Cause the allowable engine overspeed for this condition to be exceeded at 
any time. 
 
    2 Cause a loss of power or that will cause the airplane to descend below the 
takeoff path, established in accordance with § 25.111, if such a system is certificated for use 
during takeoff and climb.  This should be shown for all weights and altitudes for which 
certification is desired.  A period of five seconds should be allowed from the time the 
malfunction occurs to the initial motion of the cockpit control for corrective action taken by the 
crew. 
 
 b. Control of Engine Rotation - § 25.903(c). 
 
  (1) Explanation.  Section 25.903(c) requires that a means be provided to stop the 
rotation of any individual engine in flight.  An exclusion is provided for turbine engines whereby 
a means to stop rotation need only be provided in cases where continued rotation could 
jeopardize the safety of the airplane.  If means are not provided to completely stop the rotation of 
turbine engines, it should be shown that continued rotation, either windmilling or controlled, of a 
shut down turbine engine will not cause: 
 
   (a) Powerplant (including engine and accessories) structural damage that will 
adversely affect other engines or the airplane structure; 
 
   (b) Flammable fluids to be pumped into a fire or into an ignition source; or 
 
   (c) A vibration mode that will adversely affect the aerodynamic or structural 
integrity of the airplane. 
 
  (2) Procedures.  None. 
 
 c. Turbine Engine Installations - § 25.903(d). 
 
  (1) Explanation.  Section 25.903(d) presents specific concerns related to turbine engine 
installations.  The requirements presented in § 25.903(d)(2) are intended to ensure that the 
installed powerplant control devices, systems, and instrumentation will reasonably protect 
against exceeding engine operating limitations that adversely affect turbine rotor integrity. 
 
  (2) Intermixing of Engines.  Engines with different ratings, and/or with different cowls, 
may be intermixed on airplanes, provided the proper limitations and performance information 
associated with the engine combination are used.  In general, for four-, three-, or two-engine 
airplanes, the performance combination is as follows: 
 
   (a) When one lower power or thrust engine is installed, the normal AFM 
performance level is reduced by an increment appropriate to the decrease in power or thrust 
resulting from the intermix. 
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   (b) When more than one lower power or thrust engine is installed, the AFM 
performance should be based on the power or thrust of the lower/lowest rated engine. 
 
   (c) The minimum control speeds (VMCG, VMCA & VMCL) should be based on the 
highest power or thrust engine(s). 
 
   (d) The operating procedures should be provided for all engines installed (i.e., 
airstart altitude/airspeed envelopes, crew responses to engine warning systems, etc.).  
Differences in operating methods should be limited to the equivalent of having a maximum of 
two different engines on the airplane. 
 
   (e) A maximum of two takeoff power or thrust settings, in terms of engine 
pressure ratio (EPR) or rotational speed of the low pressure compressor (N1) are permitted for 
airplanes with intermixed engines; this includes differences related to air conditioning pack and 
compressor bleed configurations. 
 
   (f) A placard, identifying the location of the non-standard engine type, should be 
installed.  All engine limits and instrument markings should be appropriate to the engine 
installed at each location.  EPR, N1, N2, exhaust gas temperature (EGT), etc. limits for each 
engine, or the ratings at which they will be operated, must be properly presented to the pilot in 
accordance with §§ 25.1541 and 25.1543 and part 121 of the CFR. 
 
 d. Engine Restart Capability - § 25.903 (e). 
 
  (1) Explanation. 
 
   (a) Approval of Engine Restart Capability.  An altitude and airspeed envelope 
must be established by the applicant for in-flight engine restarting, and means provided to restart 
each engine in flight within this envelope.   
 
   (b) Engine Restart Envelope.  For turbojet and early turbofan engines with low 
bypass ratios (approximately one), inflight restart capability was generally provided by 
“windmilling” of the engine.  The windmilling airflow through these engines was capable of 
providing enough rotational energy to permit inflight restarting throughout most of the approved 
airspeed-altitude operating envelope.  From the experience gained with these first generation 
engines, acceptable restart capability has been established as 30 seconds from “FUEL ON” to 
ignition, and 90 seconds from “IGNITION” to stabilized idle.  The 90 second ignition to idle 
time upper limit is based on the ability of the flightcrew to perceive the progression of the engine 
start by monitoring the time rate-of-change of N2 and exhaust gas temperature.  As bypass ratios 
increased, and rotational energy requirements increased, the “windmilling” restart envelopes 
became smaller.  Some higher bypass ratio engines require an assist from an auxiliary pneumatic 
source, such as bleed air from an operating engine or an inflight operable auxiliary power unit 
(APU), to provide restart capability over a large portion of the airplane operating envelope.  
Turboprop engines, particularly those with free-turbines, also require some sort of “auxiliary” 
start assist; this is generally provided by an electric starter or, in some cases, an inflight operable 
APU.  Engine restart envelopes should clearly distinguish between the areas of different restart 
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capabilities in terms of time to restart, windmilling only restart, and auxiliary air assisted restart.  
If an APU is required for restart over a significant portion of the operating envelope, a separate 
inflight start envelope should be substantiated by flight test for the APU in the “cold-soaked” 
condition associated with medium to high altitude cruise conditions.  Engine and APU (if 
applicable) restart envelopes, and related procedures, should be included in the limitations 
section of the AFM.  
 
   (c) All-Engine Restart Capability.  As technological advancements increased 
specific engine power or thrust output with a simultaneous decrease in specific fuel 
consumption, and wing designs produced greater lift, the number of engines required for a given 
airplane weight has decreased to the point where the majority of modern transport category 
airplanes are equipped with just two engines.  Service history has recorded a number of inflight 
all-engine power or thrust loss incidents from various causes:  flameouts from inclement weather 
conditions, volcanic ash ingestion, fuel nozzle coking, fuel contamination and several cases of 
flightcrew fuel mismanagement.  These incidents have occurred during takeoff climbout and in 
high altitude cruise.  Consequently, it should be substantiated by flight test that restart capability 
exists following the inflight shutdown of all engines.  This should be demonstrated for the 
momentary shutdown from a high power or thrust setting, associated with the takeoff and climb 
flight regimes, and the extended shutdown at medium to high altitude where the engines may be 
“windmilling” and/or “cold soaked.” 
 
  (2) Procedures.   
 
   (a) Tests should be conducted to determine that inflight restarting can be 
accomplished within the envelope provided.  Restarts at the conditions of the critical corners of 
the envelope and at or near the high altitude extremes of the envelope should be conducted to 
verify the boundary conditions of the envelope. 
 
   (b) Inflight engine restart capability should also be evaluated with regard to 
suction feed climb conditions at the minimum suction feed relight altitude, and loss of normal 
electrical power (Ref. § 25.1351(d)). 
 
   (c)  The engine operating characteristics should be evaluated during each restart.  
In particular, any tendencies for the engine to surge, dwell for abnormally long periods below 
idle, or produce other unusual vibration or audible noises should be noted. 
 
   (d) To address the dual engine flameout case during takeoff and initial climb-out, 
with the engines initially at maximum climb power or thrust (or higher), it should be 
demonstrated that the test engine will accelerate to the initial power or thrust setting after a brief 
shutdown (up to 15 seconds), when the fuel source is restored. 
 
   (e) To address dual engine flameout at high altitude (greater than 20,000 feet), it 
should be shown, by a combination of flight test and analysis, that the engines can be restarted, 
and the airplane’s descent arrested, with a total altitude loss of not more than 5000 feet.  
Additionally, engine restart should be accomplished prior to exceeding 300 knots indicated air 
speed (IAS). 
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   (f) If an onboard APU is required to provide power assist for inflight engine 
restart, the minimum APU start reliability should be determined, and its operation evaluated by 
flight tests in critical portions of the flight envelope. 
 
   (g) If start cartridges are used to provide restart capability, they should be of 
sufficient capacity (or number) to provide at least two start attempts for each engine. 
 
   (h) The inflight engine restart envelope presented in the AFM should identify a 
“core windmill relight envelope” that will provide engine ignition within 30 seconds and 
stabilized idle within 90 seconds of restart initiation.  A larger envelope, which includes 
appropriately labeled longer restart times, may be allowed if it can be shown that indication of a 
clear progression of engine start is provided to the flightcrew.  The AFM should also contain the 
restart procedures appropriate to each phase of flight (i.e. low altitude “hot start,” high altitude 
“cold soaked” start, etc.). 
 
91. Automatic Takeoff Thrust Control System (ATTCS) - § 25.904. 
 
 a. Explanation.   
 
  (1) Beginning in the 1970’s, some manufacturers of turbojet powered airplanes elected 
to equip their airplanes with engine thrust control systems that automatically increased the thrust 
on the operating engine(s) when any engine failed.  A similar system, referred to as an 
Automatic Takeoff Thrust Control System, was subsequently installed on turbopropeller 
airplanes. 
 
  (2) Takeoff performance credit was granted for ATTCS based upon prescribed system 
functional and reliability requirements, and performance related restrictions (e.g., initial takeoff 
power or thrust not less than 90 percent of that set by the ATTCS).  
 
  (3) These systems represented “novel or unusual design features” not adequately 
addressed by the requirements of part 25 at the time.  Consequently, the airworthiness 
requirements for the early ATTCS certifications were prescribed in special conditions in 
accordance with § 21.16.  The regulatory and technical content of those special conditions was 
added to part 25 as § 25.904 and appendix I by Amendment 25-62. 
 
 b. Procedures.  Certification of an airplane with an ATTCS requires flight test 
demonstration of certain performance and functional aspects of the system, as outlined below: 
 
  (1) In order to comply with the part 25 airplane performance requirements, as required 
by Appendix I, I25.3(c), takeoff speeds, as limited by VMCG and VMCA, must reflect the effect of 
ATTCS operation following failure of the critical engine.  It is permissible to publish two sets of 
takeoff performance data:  one for ATTCS unarmed and one for ATTCS armed.  In such cases, 
the AFM limitations, operating procedures, and performance information should clearly 
differentiate between the two sets of performance data. 
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  (2) Engine operating characteristics should be investigated during operation of the 
ATTCS, and with the operating engines at the steady-state maximum power or thrust level 
achieved following operation of the ATTCS.  (Refer to the guidance material provided in 
paragraph 99 of this AC.) 
 
  (3) Manual override of the ATTCS should be verified in flight test.  This capability has 
been provided by the ability of the pilot to push the throttle levers to a higher power or thrust 
setting, for airplanes that use less than “full-throttle” for takeoff, and by activating an override 
switch for “firewall-type” fuel control systems.  The override switch must be located on or 
forward of the power or thrust levers, and it must be easily accessible to the pilot’s hand that 
normally controls the power lever or thrust position in accordance with Appendix I, I25.5(b)(2).  
It should also be demonstrated that the thrust/power level can be manually decreased at any time 
following ATTCS operation. 
 
  (4) A critical time period must be determined during which the probability of 
concurrent engine and ATTCS failure must be shown to be extremely improbable (not greater 
than 10-9 per flight hour).  This critical time period is defined in Appendix I to part 25 as being 
from one second before the airplane attains V1, to a time where the actual takeoff flight path (i.e., 
no gradient reductions), following a simultaneous engine and ATTCS failure, would intersect the 
normal (i.e., engine failure at VEF and no ATTCS) one-engine-inoperative actual takeoff flight 
path at no less than 400 feet above the takeoff surface.  The probability of failure of the 
automatic takeoff thrust control system, itself, must be shown to be improbable (not greater than 
10-5 per flight hour). 
 
  (5) Performance credit for an operating ATTCS is not to be taken when operations are 
conducted using reduced takeoff power or thrust methods.  If the ATTCS is armed during 
reduced power or thrust takeoffs, the relevant takeoff speeds should meet the required 
controllability criteria of part 25 at the power or thrust level provided by operation of the 
ATTCS.  The applicant should demonstrate that the airplane has no adverse handling 
characteristics and the engine(s) do not exhibit adverse operating characteristics or exceed 
operating limits when the ATTCS operates.   
 
   (a) In accordance with § 25.1585, the AFM must contain information, 
instructions, and procedures, as required, regarding the peculiarities of normal and abnormal 
operations when scheduling reduced power or thrust operations with an armed ATTCS. 
 
   (b) Takeoff with an armed ATTCS is not restricted when airplane performance is 
based on an approved “derate” power or thrust rating that has corresponding airplane and engine 
limitations approved for use under all weight, altitude, and temperature (WAT) conditions. 
 
92. Propellers - § 25.905.  [Reserved] 
 
93. Propeller Vibration and Fatigue -  25.907.  [Reserved] 
 
94. Propeller Clearance - § 25.925.  [Reserved] 
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95. Propeller Deicing - § 25.929. 
 
 a. Explanation.  None. 
 
 b. Procedures.  If the propellers are equipped with fluid type deicers, the flow test should 
be conducted starting with a full tank of fluid and operated at maximum flow rate for a time 
period (15 min.) found operationally suitable.  The operation should be checked at all engine 
speeds and powers.  The tank should be refilled to determine the amount of fluid used after the 
airplane has landed. 
 
96. Reversing Systems - § 25.933. 
 
 a. Turbojet Reversing Systems - § 25.933(a).   
 
  (1) Explanation. 
 
   (a) For reversers intended to be operable on the ground only, it must be shown 
that the airplane can be safely landed and stopped with a critical engine reverser deployed.  In 
addition, if an undamaged reverser inadvertently becomes deployed in flight, it must be shown 
that it can be safely restored to a forward power or thrust position.  
 
   (b) For turbojet reversing systems intended for ground and/or inflight use, it must 
be shown that unwanted deployment of a critical reverser under normal operating conditions will 
not prevent continued safe flight and landing.  Flight tests may be required to obtain 
aerodynamic data with the critical reverser deployed, to confirm that its deployment in the 
normal operating envelope will not be catastrophic to the airplane.   
 
  (2) Procedures.   
 
   (a) Turbine engine thrust reversers may be approved provided the following basic 
criteria are met:  
 
    1 Exceptional piloting skill is not required in taxiing, or in any condition in 
which reverse thrust is to be used.  
 
    2 Necessary operating procedures, operating limitations, and placards are 
established.  
 
    3 The airplane control characteristics are satisfactory with regard to control 
forces encountered.  
 
    4 The directional control is adequate using normal piloting skill.  This is of 
particular importance for airplanes with aft-mounted engines, which may experience a loss of 
rudder effectiveness with reverse thrust.  This may result in reductions in maximum reverse 
thrust levels (i.e., lower EPR or N1 settings) and/or increases in reverse thrust minimum 
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operational speeds.  The stabilizing effect of the nose gear should also be investigated, 
particularly for the one-engine inoperative use of reverse thrust on wet runway surfaces.  
 
    5 A determination is made that no dangerous condition is encountered in 
the event of the sudden failure of one engine in any likely reverse thrust operating condition 
throughout the airplane’s approved operating envelope.  
 
    6 The operating procedures and airplane configuration are such as to 
provide reasonable safeguards against engine foreign object ingestion and serious structural 
damage to parts of the airplane due to the reverse airflow.  This is normally accomplished by 
specifying in the limitations section of the AFM a minimum airspeed at which the thrust 
reversers must be retracted.  
 
    7 It is determined that the pilot’s vision is not dangerously obscured under 
normal operating conditions on dusty or wet runways and where light snow is on the runway.  
 
    8 For seaplanes, it is determined that the pilot’s vision is not dangerously 
obscured by spray due to reverse airflow under normal water operating conditions.  
 
    9 The procedure and mechanisms for reversing should provide a reverse 
idle setting such that, without requiring exceptional piloting skill, at least the following 
conditions are met:  
 
     (aa)  Sufficient power or thrust is maintained to keep the engine running 
at an adequate speed to prevent engine stalling during and after the reversing operation.  
 
     (bb) The engine does not overspeed or stall during and after the reversing 
operation.  
 
     (cc) The engine cooling characteristics should be satisfactory in any 
likely operating condition. 
 
    10 For airplanes equipped with thrust reversers intended for inflight use, the 
effect of non-deployment of a reverser (i.e., asymmetric deployment) on airplane controllability 
should be investigated.  
 
   (b) For the failed reverser demonstration tests, the following criteria are provided:  
 
    1  The landing with a reverser deployed should be conducted with a flap 
setting and an airspeed such that a landing can be accomplished safely and consistently.  The 
conditions and operating procedures to use when the landing is made with the deployed reverser 
must be defined and incorporated in the AFM per § 25.1585(a)(2) or (a)(3), whichever is 
applicable.  
 
    2 The restow test should be conducted at a reasonable and safe altitude and 
at an airspeed where the airplane can be safely controlled (approximately 200 knots).  A 
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procedure should be developed so that the reverser can be restowed (if undamaged) safely, 
without causing unacceptable airplane controllability problems.  The restowing procedure, 
airspeed, and airplane flight controls configuration should be provided in the AFM. 
 
  (3) Aircraft Backing Using Reverse Thrust.  Limited operational approvals have been 
granted for the use of thrust reverser systems to back away from terminal gates in lieu of a tug 
pushback.  These approvals are granted by the cognizant FAA Flight Standards office for each 
operator, the approval consisting of an amendment to the operator’s operations specifications 
identifying the airplane type, the airport, and the specific gates at that airport at which reverse 
thrust backing may be used.  Though reverse thrust backing is not specifically an airworthiness 
approval item, there are certain areas of concern that overlap airworthiness and operations.  
(These items are addressed in paragraph 240 of this AC.) 
 
 b. Propeller Reversing Systems - § 25.933(b). 
 
  (1) Explanation.  None. 
 
  (2) Procedures.  Reverse thrust propeller installations may be approved, provided the 
following is acceptable: 
 
   (a) A reliable means for preventing the inflight selection of a power setting below 
flight idle is provided. 
 
   (b) Exceptional piloting skill is not required in taxiing or in any condition in 
which reverse thrust is to be used. 
 
   (c) Necessary operating procedures, operating limitations, and placards are 
established. 
 
   (d) The airplane control characteristics are satisfactory with regard to control 
forces encountered. 
 
   (e) The directional control is adequate using normal piloting skill. 
 
   (f) A determination is made that no dangerous condition is encountered in the 
event of sudden failure of one engine in any likely operating condition. 
 
   (g)  The operating procedures and airplane configuration are such as to provide 
reasonable safeguards against serious structural damage to parts of the airplane due to the direct 
effects of the reverse airflow or any resultant buffeting. 
 
   (h)  It is determined that the pilot’s vision is not dangerously obscured under 
normal operating conditions on dusty or wet runways and where light snow is on the runway. 
 
   (i) It is determined that the pilot’s vision is not dangerously obscured by spray 
due to reverse airflow under normal water operating conditions with seaplanes. 
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   (j) The procedure and mechanisms for reversing should provide a reverse idle 
setting such that without requiring exceptional piloting skill at least the following conditions are 
met: 
 
    1 Sufficient power is maintained to keep the engine running at an adequate 
speed to prevent engine stalling during and after the propeller reversing operation. 
 
    2 The propeller does not exceed the approved speed limit of 14 CFR part 35 
or the airplane-manufacturer-declared propeller speed limit during and after the propeller 
reversing operation. 
 
    3 This idle setting does not exceed 25 percent of the maximum continuous 
rating. 
 
   (k) The engine cooling characteristics should be satisfactory in any likely 
operating condition. 
 
97. Turbojet Engine Thrust Reverser System Tests - § 25.934.  [Reserved] 
 
98. Turbopropeller-Drag Limiting Systems - § 25.937. 
 
 a. Explanation. Approval of Automatic Propeller Feathering Systems.  All parts of the 
feathering device that are integral with the propeller, or attached to it in a manner that may affect 
propeller airworthiness, should be considered from the standpoint of the applicable provisions of 
part 35.  The determination of the continuing eligibility of the propeller under the existing type 
certificate, when the device is installed or attached, will be made on the following basis: 
 
  (1) The automatic propeller feathering system should not adversely affect normal 
propeller operation and should function properly under all temperature, altitude, airspeed, 
vibration, acceleration, and other conditions to be expected in normal ground and flight 
operation. 
 
  (2) The automatic device should be demonstrated to be free from malfunctioning 
which may cause feathering under any conditions other than those under which it is intended to 
operate.  For example, it should not cause feathering during: 
 
   (a) Momentary loss of power or thrust; or 
 
   (b) Approaches with reduced throttle settings. 
 
  (3) The automatic propeller feathering system should be capable of operating in its 
intended manner whenever the throttle control is in the normal position to provide takeoff power 
or thrust.  No special operations at the time of engine failure should be necessary on the part of 
the crew in order to make the automatic feathering system operative.  (See also §§ 25.101, 
25.111, 25.121 and 25.1501.) 
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  (4) The automatic propeller feathering system installation should be such that not more 
than one engine will be feathered automatically, even if more than one engine fails 
simultaneously. 
 
  (5) The automatic propeller feathering system installation should be such that normal 
operation may be regained after the propeller has begun to feather automatically. 
 
  (6) The automatic propeller feathering system installation should incorporate a switch, 
or equivalent means, by which to make the system inoperative. 
 
 b. Procedures. 
 
  (1) Propeller Feathering System Operational Tests. 
 
   (a) Tests should be conducted to determine the time required for the propeller to 
change from windmilling (with the propeller controls set for takeoff) to the feathered position at 
the takeoff safety speed, V2. 
 
   (b) The propeller feathering system should be tested to demonstrate non-rotation 
or as a minimum, non-hazardous rotation at up to 1.2 times the maximum level flight speed, with 
one engine inoperative or the speed employed in emergency descents, whichever is higher, with: 
 
    1 The critical engine inoperative; 
 
    2 Wing flaps retracted; 
 
    3 Landing gear retracted; and 
 
    4 Cowl flaps (if applicable) closed. 
 
   (c) A sufficient speed range should be covered to assure that the propeller 
feathering angle, established on the basis of the high speed requirement, will not permit 
hazardous reverse rotation at the lower speeds.  In addition, the propeller should not 
inadvertently unfeather during these tests. 
 
   (d) In order to demonstrate that the feathering system operates satisfactorily, the 
propeller should be feathered and unfeathered at the maximum operating altitude established in 
accordance with § 25.1527.  The following data should be recorded: 
 
    1  Time to feather the propeller at the one-engine-inoperative cruising 
speed; 
 
    2 Time to unfeather the propeller to the minimum declared governing speed 
at maximum operating altitude (note that some driftdown may occur) and one-engine-inoperative 
cruising speed; 
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    3 Altitude of propeller feathering tests; and 
 
    4 Ambient air temperature of propeller feathering tests. 
 
   (e) In order to demonstrate that the feathering system operates satisfactorily, the 
propeller should be feathered at the condition within the airplane operating envelope that is 
critical for the propeller. 
 
99. Turbine Engine Operating Characteristics - § 25.939. 
 
 a. Explanation.  The turbine engines of a transport category airplane must continue to 
operate safely during normal and emergency operation within the range of operating limitations 
of the airplane.  Generally, compliance with § 25.939(a) can be determined to some extent while 
ascertaining compliance with other part 25 requirements, such as performance, controllability, 
maneuverability, and stall speed characteristics.  Turbine engines should be stable in their 
operation and run free of adverse characteristics throughout the normal flight envelope.  Certain 
adverse characteristics are allowed in specific flight regimes if they do not present a hazardous 
condition. 
 
 b. Reference.  See AC 25.939-1, “Evaluating Turbine Engine Operating Characteristics,” 
dated March 19, 1986, for comprehensive guidance in the evaluation of turbine engine operating 
characteristics to show compliance with the requirements of § 25.939(a), only.  The referenced 
AC does not provide guidance for compliance with § 25.939(c), which addresses inlet 
compatibility. 
 
 c. Inlet Compatibility - § 25.939(c). 
 
  (1) Explanation.  Section 25.939(c) requires substantiation that the engine inlet 
systems on turbine engines not cause harmful vibration to the engine as a result of airflow 
distortion.  This should be verified in both static and transient power or thrust conditions. 
 
  (2) Procedures.  Compliance with § 25.939(c) may require special instrumentation of 
the inlet itself, or the engine’s most critical component (i.e., fan blades).  Inlet rakes permit the 
applicant to verify that the installed airflow distortion patterns are within the limits established 
by the engine manufacturer.  In addition, accelerometer and/or strain gauge data could be 
acquired in flight tests to verify that vibration and stress level limits are not exceeded during 
operation in the normal flight envelope. 
 
100. Inlet, Engine, and Exhaust Compatibility - § 25.941.  [Reserved] 
 
101. Negative Acceleration - § 25.943. 
 
 a. Explanation.  Section 25.943 requires that no hazardous malfunction of an engine, APU, 
or any component or system associated with their operation, should result from airplane 
operation at negative accelerations.  A hazardous malfunction in this case is considered to be one 
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that causes loss or sustained malfunction of the engine or APU, or improper operation of the 
engine accessories or systems.  This requirement can be satisfied by flight test demonstrations 
that take into consideration the critical airplane, engine and APU configurations.  The range of 
negative accelerations to be tested is prescribed by the flight envelope for the airplane, as 
defined in § 25.333.  The duration of the negative acceleration excursions is intended to 
represent anticipated non-normal operational events such as atmospheric upsets, collision 
avoidance maneuvers, etc. 
 
 b. Procedures.   
 
  (1) In conducting negative acceleration tests, consideration should be given to engine 
accessory configurations, and critical levels of fuel and oil. 
 
  (2) Accelerations should be measured as close as practicable to the airplane’s c.g. 
position. 
 
  (3) With the engines operating at maximum continuous power or thrust, and the APU 
operating with normal load (if flight operable), the airplane should be flown at a critical negative 
acceleration within the flight envelope.  The duration of each test condition should be a 
minimum of 7 seconds between 0 and -1.0g, with a total accumulation of 20 seconds of negative 
acceleration operation. 
 
  (4) Test data should be analyzed with regard to maintaining adequate fuel flow to the 
engines and APU, and maintaining lubrication of critical components. 
 
  (5) Test planning should consider that sufficient altitude be available to conduct a 
suction feed relight in the unlikely event of an all-engine flameout, in which case the tank pump 
feed lines will become uncovered and air will enter each feed line. 
 
102. Thrust or Power Augmentation System § 25.945.  [Reserved] 
 

 
Section 2.  Fuel System 

 
 
[103. - 108.] [Reserved] 
 
109. Unusable Fuel Supply - § 25.959. 
 
 a. Explanation. 
 
  (1) The purpose of this test is to determine, for each fuel tank, the quantity of fuel that 
is not available to the engines, as specified in § 25.959.  The unusable fuel quantity is the 
quantity of fuel that can be drained from the fuel tank sump with the airplane in its normal level 
ground attitude after a fuel tank unusable fuel test has been performed, plus the quantity 
remaining in the fuel tank (undrainable fuel). 
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  (2) A fuel tank that is not designed to feed the engines under all flight conditions need 
be tested only for the flight regime for which it is designed to do so (e.g., cruise conditions).  
Tanks that are not subject to aeroelastic effects of flight, such as wing bending or tank flexing, 
may have their unusable fuel quantity determined during a ground test.  Suitable instructions on 
the conditions under which the tank may be used should be provided in the AFM.  Other part 25 
requirements, such as fuel flow (§ 25.955(a)(2)) and fuel quantity gauge calibration (§ 25.1553), 
are also related to the unusable fuel quantity.  These other requirements must also be considered 
when the unusable fuel quantity is being determined for each fuel tank. 
 
 b. Procedures.    
 
  (1) The fuel system and tank geometry should be analyzed to determine the critical 
conditions for the specific tanks being considered (i.e., main and auxiliary or cruise tanks).  The 
analysis should determine the amount of unusable fuel as a function of airplane pitch and roll 
attitudes, including those encountered when executing sideslips and dynamic maneuvers such as 
go-around pitch-up and acceleration.  Particular attention should be directed toward the fuel tank 
or cell geometry and orientation with respect to the longitudinal axis of the airplane and location 
of the fuel tank outlets (i.e., fuel pump inlets or pickups).  Care should be taken in planning how 
the critical attitude conditions are tested, so that the test procedure does not result in a non-
conservative unusable fuel quantity.   
 
  (2) The term “most adverse fuel feed condition” is not intended to include radical or 
extreme conditions not likely to be encountered in operation.  Judgment should be used in 
determining what maneuvers are appropriate to the type of airplane being tested.  The test 
conditions should be selected using good judgment with regard to the kind of conditions the 
airplane under test will be subjected to in operation. 
 
  (3) Airplane attitude limitations may be used as a means of reducing the unusable fuel 
quantity, provided it is demonstrated that likely operational flight maneuvers can be 
accomplished with those attitude limits.  Nose down pitch attitude should not be less than that 
for normal descent, approach, and landing maneuvers.  Nose up pitch attitude consistent with a 
normal go-around condition, or a minimum of 10 degrees nose up, whichever is less, should be 
considered.  Roll attitude limitations should not be less than that required to enter a normal 
traffic pattern, intercept the final approach course, and land with a 10-knot crosswind. 
 
  (4) After the most adverse fuel feed condition and the critical flight attitude have been 
determined for the specific fuel tanks being considered, the appropriate flight tests should be 
conducted.  The flight testing should investigate the effects of the following: 
 
   (a) Steady state sideslips anticipated during operation with the airplane in both the 
approach and landing configurations. 
 
   (b) For those airplanes capable of high roll and pitch rates, abrupt maneuvers 
should be considered. 
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   (c) A go-around condition at maximum acceleration and maximum rotation rate to 
the maximum pitch attitude should be considered. 
 
   (d) Effects of turbulence on unusable fuel quantity should be considered. 
 
   (e) If the airplane includes a low fuel quantity warning system, it should be 
demonstrated that the airplane can complete a go-around, approach, and return to landing, 
without fuel feed interruption, using the normal go-around pitch attitude; this should include go-
arounds accomplished with the aid of automated flight guidance systems. 

 
  (5) If airplane attitude limitations are employed to reduce the unusable fuel quantity, 
those attitude limitations must be published in the AFM (per § 25.1581(a)(2)) as limits for flight 
maneuvers after the low fuel warning light/message illuminates.  This will provide assurance that 
the fuel remaining that is above the unusable quantity can be used without risk of fuel feed 
interruption to the engines.  Flight tests should be conducted to confirm that the proposed pitch 
attitude limit: 
 
   (a) Is practical in terms of airplane flight characteristics for accomplishing a go-
around; and 
 
   (b) Will not result in lift and drag characteristics that will increase the time and/or 
fuel quantity necessary to complete the go-around to a point where the fuel remaining is less than 
the unusable fuel quantity. 
 
  (6) If fuel pump failure en route would result in a significant reduction in usable fuel, 
the unusable fuel supply test should include a determination of this quantity.  The effects of 
pump failure on the unusable fuel quantity should be presented in the AFM so that the flightcrew 
can take the reduction in usable fuel into account for flight planning purposes. 
 
  (7) Auxiliary fuel tanks and fuel transfer tanks designed or restricted for use during 
cruise flight only (i.e., not suitable for takeoff and landing) should be tested for unusable fuel 
quantity by appropriate investigation of the cruise environment.  This should include reasonable 
turbulence levels, asymmetrical power or thrust, adverse fuel feed/transfer configuration, etc.  
However, the unusable fuel quantity should not be less than fuel tank sump quantity. 
 
110. Fuel System Hot Weather Operation - § 25.961. 
 
 a. Explanation. 
 
  (1) A flight test is normally necessary to complete the hot weather operation tests 
required by § 25.961(a).  If a ground test is performed, § 25.961(b) requires that the ground test 
must closely simulate flight conditions.  If a flight test is performed, the test should be conducted 
with hot fuel in the tanks normally used for takeoff and landing, and with the maximum number 
of engines drawing fuel from each tank, in accordance with the operating procedures provided in 
the AFM, to obtain the maximum anticipated fuel flow through the lines.  In the case of 
symmetrical fuel tank systems, the tests may be confined to one of each such system.  Critical 
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fuel that is unweathered or has not been exposed to long storage periods should be used during 
the tests.  This ensures that the fuel has the maximum Reid vapor pressure (RVP) for which 
approval is requested.  Fuel samples should be taken from the fuel tank prior to the test; for 
typical JET B (JP-4) type fuels, a minimum RVP of 3.0 has been required.  The fuel temperature, 
just prior to takeoff, should be as close as practical to the maximum value for which operational 
approval is sought, but not less than 110º F as required by § 25.961(a)(5).  If the fuel needs to be 
heated to this temperature, caution should be taken to prevent overheating during the process. 
 
  (2) The desirable outside ambient air temperature at the airport from which the tests 
are being conducted should be at least 85º F (29º C).  If tests are performed in weather cold 
enough to interfere with test results, § 25.961(b) requires insulating fuel tank surfaces, fuel lines, 
and other fuel system components from cold air to simulate hot-day conditions.  It should not be 
necessary to provide additional heat to the fuel after the original fuel sample is heated to 
temperature during the hot weather tests.  However, if the fuel is used as the cooling medium for 
any heat exchangers, the maximum heat available to the fuel should be considered. 
 
  (3) If auxiliary pumps are being considered for use as emergency pumps, they should 
be inoperative.  This test may be used to establish the maximum pressure altitude for operation 
with these pumps off.  A fuel pressure failure is considered to occur when the fuel pressure 
decreases below the minimum prescribed by the engine manufacturer, or the engine does not 
operate satisfactorily. 
 
 b. Test Procedures and Required Data. 
 
  (1) The fuel temperature, just prior to takeoff, should be as close as practical to the 
maximum value for which operational approval is sought.  If heating of the fuel is required, a 
takeoff and climb should be made as soon as possible after the fuel in the tank has been heated to 
avoid cooling of the fuel. 
 
  (2) Power or thrust settings should be maintained at the maximum approved levels for 
takeoff and climb in accordance with § 25.961(a)(2).  Section 25.961(a)(3) requires the weight of 
the airplane to be the weight with full fuel tanks, minimum crew, and the ballast necessary to 
maintain the center of gravity within allowable limits.  The airspeed during the climb should not 
exceed that speed used in demonstrating the requirements specified in § 25.961(a)(4).  The 
combination of power or thrust, airplane weight and climb airspeed establishes the climb rates 
that must be considered when determining the critical conditions for testing.  The airplane fuel 
load and rate of climb are the critical parameters for this test.  Although the weight of the 
airplane must be based on full fuel tanks, experience has shown that full fuel tanks may not 
always be the most critical fuel load.  Generally, full tanks result in the maximum head pressure 
over the tank pumps.  A lesser tank quantity results in a lesser head pressure that may be more 
critical to the formation of fuel vapor in the pumps and fuel system lines.  A greater rate of climb 
results in more air per unit time being released in the feed lines during the climb.  An analysis 
may be needed to determine the critical combination of fuel quantity state and airplane climb 
rate that is operationally likely to occur.  The test should be conducted at this critical 
combination of fuel quantity state and airplane climb rate with the airplane loaded to the weight 
and flown within the range of climb airspeeds at the power or thrust required by the regulation.   
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NOTE: The fuel systems of some airplanes are designed to feed fuel to the engines from 
auxiliary and main fuel tanks.  This results in variations in fuel feed configurations as part of the 
approved fuel management.  Variations in fuel feed configurations, including changes in fuel 
feed configuration such as transition from feeding fuel to the engine(s) from one tank to feeding 
from another, should be considered in assessing fuel feed performance in demonstrating 
compliance to §§ 25.951 or 25.955 and considered in establishing the critical conditions for the 
hot fuel evaluation. 
 
  (3) If the engines are normally operated with the auxiliary/emergency pumps “off,” 
they should remain “off” until fuel pressure failure occurs.  Restoration of fuel pressure should 
be noted and the climb continued to the maximum operating altitude selected by the applicant for 
certification.  If a lower altitude is substantiated, appropriate operating limitations should be 
established and furnished in the AFM. 
 
  (4) The tests should be conducted with the fuel system operating and configured 
normally, in accordance with the normal procedures outlined in the AFM.  The following data 
should be recorded at reasonable time intervals: 
 
   (a) Fuel temperature in the tank 
 
   (b) Engine fuel pressure, measured at the engine/airplane interface, at the start of 
the test and during climb (note any pressure failure, fluctuation, or variation) 
 
   (c) Main and auxiliary/emergency fuel pump operation, as applicable 
 
   (d) Pressure altitude 
 
   (e) Ambient air temperature 
 
   (f) Airspeed 
 
   (g) Engine power or thrust setting and operating parameters (i.e., engine pressure 
ratio, gas generator speed, fan speed, exhaust gas temperature, fuel flow, etc.) 
 
   (h)  Comments on engine operation 
 
   (i) Fuel quantities in fuel tanks 
 
   (j) Fuel grade or designation determined prior to test 
 
   (k) Airplane pitch and roll attitudes 
 
  (5) If significant fuel pressure fluctuations occur during testing of the critical flight 
conditions, but pressure failure does not occur, additional testing should be considered to 
determine that pressure failure may not occur during any expected operating mode.  Also, the 
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fuel system should be evaluated for vapor formation when switching from different fuel feed 
configurations, or at low fuel flow and idling approach and landing. 
 
[111. - 116.] [Reserved] 
 
117. Fuel Tank Vents and Carburetor Vapor Vents - § 25.975.  
 
 a. Explanation.  Approval of Fuel Tank Vents (§ 25.975(a)). 
 
  (1) The tank venting arrangement must prevent siphoning of fuel during normal 
operation.  Also the venting capacity and vent pressure levels must maintain acceptable 
differences of pressure between the interior and exterior of the tank during:  
 
   (a) Normal flight operation; 
 
   (b) Maximum rate of ascent and descent; and 
 
   (c) Refueling and defueling.  
 
  (2) No vent or drainage provision may end at any point where the discharge of fuel 
from the vent outlet would constitute a fire hazard, or where the discharge of fumes could enter 
personnel compartments.  
 
  (3) Each carburetor vent system must have means to avoid stoppage by ice.  
 
 b. Procedures.   
 
  (1) Tests should be conducted to ensure that no hazardous quantities of fuel will be 
siphoned overboard during any likely maneuvers encountered during normal operations.  
Maneuvers that may require evaluation include, but are not necessarily limited to, the following:  
 
   (a) Taxi turns and turning takeoff maneuvers with  fuel tanks filled to the 
maximum volume (below the required 2 percent expansion space) allowed by the type design, 
including consideration of tolerances in the volumetric shutoff level.  Typically, left and right-
hand turns are conducted in a “figure eight” maneuver, followed by a maximum pitch and ascent 
rate takeoff; 
 
   (b) Maximum climb power or thrust ascent at high climb angles; 
 
   (c) Simulated turbulent air oscillations at or near the natural yawing and pitching 
frequency of the airplane; 
 
   (d) Rapid descent with high initial pitch-down rate; 
 
   (e) In-flight power-up turns; and 
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   (f) Sideslip maneuvers on approach.  
 
  (2) The changes in tank secondary barrier cavity pressure during all airplane 
maneuvers, including emergency descent, should be accounted for in the design of the fuel tank.  
Bladder type tanks may be critical under emergency descent conditions, depending on the cavity 
vent line sizing.  Per § 25.975(a)(3), the vent/drain configuration must provide the required 
positive and negative pressure relief between the outer shell and the bladder or inner wall, to 
prevent collapse or over-expansion of the inner tank.  Depending on the location of the 
overboard vent/drain exit and the airflow characteristics around the exit or exit mast, a flight test 
may be required to evaluate the ascent and/or emergency descent characteristics of the cavity 
vent system with the airplane in both the “clean” and “wheels and flaps down” configuration.  
 
  (3) Verification that liquid discharge from the vent mast will flow clear of the airplane, 
not attaching itself to any airplane surface or re-entering any compartment of the airplane, may 
need to be accomplished by impingement tests conducted inflight.  Small discharges of fuel from 
the fuel tank vent outlet have been acceptable, provided the fuel discharges clear of the airplane 
and does not result in siphoning of fuel from the tank.  This can be accomplished using dyed 
fluid and/or coating the surfaces required to be free of impingement with powder compounds 
that will be washed away if contacted by liquid.  If dyed water or other liquid is used, it may be 
necessary to add chemicals to prevent freezing during the test.  Sufficient test maneuvers should 
be accomplished to ensure that impingement will not occur during any inadvertent discharge 
from the venting system. 
 
  (4) Carburetor vent systems may require flight testing to ensure against stoppage by 
freezing.  Such tests can be conducted in conjunction with the tests required by § 25.1093 and/or 
§ 25.1101 (see the “Procedures” for those sections in this AC). 
 
[118. - 120.] [Reserved] 

 
 

Section 3.  Fuel System Components 
 
 
[121. - 126.] [Reserved] 
 
127. Fuel Jettisoning System - § 25.1001. 
 
 a. Explanation. 
 
  (1) Section 25.1001(a) prescribes the conditions governing the need for installation of 
fuel jettisoning systems; if an airplane can meet the climb requirements of §§ 25.119 and 
25.121(d), at the weight existing after a 15 minute flight consisting of a maximum weight takeoff 
and immediate return landing, a fuel jettisoning system is not required.  Credit is given for the 
actual or computed weight of fuel consumed in the 15 minute flight using the airplane 
configurations, power or thrust settings, and speeds appropriate to each flight segment. 
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  (2) If a fuel jettisoning system is required, § 25.1001(b) prescribes the conditions that 
will determine the minimum flow rate of the system.  Section 25.1001(b) requires the fuel 
jettisoning system to be capable of reducing the weight of the airplane, within 15 minutes of 
operation, from that specified in § 25.1001(a) to a weight at which the airplane will meet the 
climb requirements of §§ 25.119 and 25.121(d).  Since the weight defined in § 25.1001(a) allows 
credit for a 15 minute fuel burn, a literal interpretation of this rule would result in a 15 minute 
jettisoning period beginning after a 15 minute takeoff, go-around, and approach flight.  In 
application, the 15 minute jettisoning period will occur during a 30 minute flight in which weight 
reduction credit will be given for the fuel consumed and jettisoned.  The airplane must be able to 
meet the specified climb requirements at the weight existing at the end of this 30 minute flight. 
 
  (3) Airplanes should also be investigated for other elements that may limit their ability 
to safely accomplish an immediate return landing without a fuel jettisoning system.  Advances in 
wing design and propulsion technology have resulted in transport category airplane designs that 
can take off at weights considerably above their maximum landing weights.  Many of these 
airplanes are capable of meeting the climb requirements of §§ 25.119 and 25.121(d), following a 
15 minute flight, without a fuel jettisoning system.  Some of these airplanes, however, may not 
be capable of landing without exceeding other certification limits such as maximum brake 
energy, landing distance, and tire speed.  This is particularly true when non-normal procedures, 
implemented as a result of failures that have been shown to be foreseeable events, call for 
reduced flap settings and increases of as much as 30 knots, for a given weight, over speeds 
associated with the normal landing flap setting.  Margins to flap placard limit speeds and flap 
load-relief activation speeds should be established and maintained for non-normal configurations  
that may be used in immediate return landings. 
 
  (4) An additional consideration that is representative of actual operating conditions is 
the ability to perform a go-around from field elevation with the flaps in the approach position 
and the landing gear down.  Through compliance with § 25.1001(b), assurance will be obtained 
that the airplane can accomplish an all-engines-operating balked landing go-around, with normal 
landing flaps, followed by a one-engine-inoperative climb-out with approach flaps and landing 
gear up.  However, non-normal procedures generally call for one-engine-inoperative landings to 
be made with the flaps in the position used to show compliance with the approach climb 
requirements of § 25.121(d).  It should therefore be determined under what combinations of 
weight, altitude, and temperature the airplane can establish a positive rate-of-climb with one-
engine-inoperative and the other operating at go-around power or thrust, with the flaps in the 
appropriate go-around position and the landing gear down.  
 
 b. Procedures.  The basic purpose of these tests is to verify that the minimum jettisoning 
rate will allow the airplane to safely execute an immediate return landing, and to determine that 
the required amount of fuel may be safely jettisoned under reasonably anticipated operating 
conditions within the prescribed time limit, without danger from fire, explosion, or adverse 
effects on the flying qualities. 
 
  (1) Jettisoning Rate. 
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   (a) In determining the minimum jettisoning rate, the tanks, tank combinations, or 
fuel feed configurations that are critical should be selected for demonstrating the flow rate. 
 
   (b) It should be determined if airplane attitude or configuration has an effect on 
the jettisoning rate.  
 
   (c) It should be demonstrated that the means to prevent jettisoning of the fuel in 
the tanks used for takeoff and landing, below the level to meet the requirements of § 25.1001(e) 
and (f), are effective. 
 
   (d) It should be demonstrated that operation of the jettisoning system does not 
have a detrimental effect on operation of the engines (and the APU if installed and approved for 
inflight operation). 
 
  (2) Fire Hazard. 
 
   (a) The fuel jettisoning flow pattern should be demonstrated from all normally 
used tank or tank combinations on both sides of the airplane, whether or not both sides are 
symmetrical. 
 
   (b) The fuel jettisoning flow pattern should be demonstrated for the flight 
conditions specified in § 25.1001(d)(1), (2), and (3).  Steady-state sideslips anticipated during 
operation should be conducted during flight conditions. 
 
   (c) Fuel in liquid or vapor form should not impinge upon any external surface of 
the airplane during or after jettisoning.  Colored fuel, or surface treatment that liquid or vaporous 
fuel changes the appearance of, may be used on airplane surfaces for detection purposes.  Other 
equivalent methods for detection may be acceptable. 
 
   (d) Fuel in liquid or vapor form should not enter any portion of the airplane during 
or after jettisoning.  The fuel may be detected by its scent, a combustible mixture detector, or by 
visual inspection.  In pressurized airplanes, the check for the presence of liquid or vaporous fuel 
should be accomplished with the airplane unpressurized. 
 
   (e) There should be no evidence of leakage after the fuel jettisoning valve is 
closed. 
 
   (f) Testing should be conducted with the wing flaps in all available positions and 
during transition from each position to the next.  If there is any evidence that wing control 
surface (flaps, slats, etc.) positions may adversely affect the flow pattern and allow fuel to 
impinge on the airplane, the airplane should be placarded and a limitation noted in the AFM. 
 
  (3) Control. 
 
   (a) Changes in the airplane control qualities during the fuel jettisoning tests 
should be investigated, including asymmetrical jettisoning. 

 203 



10/16/12  AC 25-7C 

 
   (b) Discontinuance of fuel jettisoning should be demonstrated in flight. 
 
  (4) Residual Fuel.  The quantity of usable fuel that cannot be jettisoned should be 
determined to meet the requirements of § 25.1001(e) or (f), as applicable.  One acceptable means 
to show compliance with the requirement for sufficient fuel remaining to permit continued flight 
has been to drain the remaining fuel from the test tank(s) after landing.  Applicants may propose 
other means of compliance. 

 
 

Section 4.  Oil System [Reserved] 
 
 

Section 5.  Cooling 
 
 
[128. - 129.] [Reserved] 
 
130. Cooling Test Procedures - § 25.1045. 
 
 a. Explanation.  The following guidance applies to cooling test procedures for turbine 
engine powered airplanes. 
 
  (1) Purpose.  In accordance with § 25.1041, cooling tests must be conducted to 
determine the ability of the powerplant cooling provisions to maintain the temperatures of 
powerplant components and engine fluids within the temperature limits for which they have been 
certificated.  These limits will normally be specified on the engine type certificate data sheet 
(TCDS), qualification specification sheet for the component, and/or in the approved engine 
installation handbook.  
 
  (2) Scope.  Cooling tests should be conducted under (or data corrected to) critical 
ground and flight operating conditions to the maximum altitude for which approval is requested.  
 
 b. Flight Test Procedures.  
 
  (1) Moisture.  The tests should be conducted in air free of visible moisture.  
 
  (2) Weight and C.G.  Forward c.g. at maximum gross weight is usually the most critical 
condition as this results in the lowest airspeed and/or vertical speed.  However, a lighter initial 
gross weight or a critical step climb profile may be necessary to get to maximum altitude.  In any 
case, the most critical climb profile must be established by the applicant and agreed to by the 
FAA prior to commencing testing. 
 
  (3) Test Conditions.  The critical flight profile(s) should be tested.  It may be necessary 
to fly multiple flights with different flight profiles to assure all components under test are 
exposed to their most critical anticipated sequence of test conditions.  Flight profiles with 
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periods of relatively high heat rejection and relatively low cooling, such as can occur during step 
climbs and at the top of descent, may be more critical for some components, for example, those 
in or affected by the engine oil system. The period after engine shutdown on the ground may also 
be critical for some components.  The applicant should identify and obtain the FAA’s approval 
of the flight test profile(s) prior to beginning certification testing.  The following sequence of test 
conditions is usually adequate to cover the critical case for most components: 
 
   (a) Initiate the flight test once critical temperatures have stabilized after engine 
start; 
 
   (b) Use the test engine to perform a 1 mile single engine taxi; 
 
   (c) Hold at idle power or thrust in a 10 knot or greater crosswind for 20 minutes or 
until temperatures stabilize (use ground test definition of stabilization); 
 
   (d) Operate at least the test engine at the rated takeoff power or thrust for the 
maximum approved period (usually either 5 or 10 minutes) during a maximum gross 
weight/forward c.g. takeoff; 
 
   (e) Perform simulated one-engine-inoperative and all-engines-operating climbs, 
operating the test engine at maximum continuous power or thrust until the engine temperatures 
stabilize or the airplane reaches maximum operating altitude (or until the airplane is essentially 
unable to climb further as indicated by a very low climb rate, e.g., 200 feet/minute);  
 
   (f) Cruise with the test engine at maximum continuous power or thrust (but a 
speed no higher than VMO/MMO) at maximum operating altitude until temperatures stabilize; 
 
   (g) Conduct a normal descent at VMO/MMO to a typical holding altitude and hold 
until temperatures stabilize; 
 
   (h) Conduct a normal approach to landing, but from not less than 200 feet above 
the ground: 
 
    1 Perform a simulated engine out go-around;  
 
    2 Climb to pattern altitude; then 
 
    3 Perform a normal approach and landing. 
 
   (i) Taxi back to the ramp and shut down the engines; then 
 
   (j) Allow the test engine’s heat-soak to peak.     
 
  (4) Oil Quantity.  The critical condition should be tested.  
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  (5) Thermostat.  Airplanes that incorporate a thermostat in the engine oil system may 
have the thermostat retained, removed, or blocked in such a manner as to pass all engine oil 
through the oil cooler.  If the thermostat is retained, the oil temperature readings obtained on a 
cooler day corrected to hot day conditions may therefore be greater than those obtained under 
actual hot day conditions.  Caution should be exercised when operating an airplane with the 
thermostat removed or blocked during cold weather to prevent failure of the lubricating system 
components. 
 
  (6) Instrumentation.  The applicant must identify all critical components (electronic 
components, actuators, etc.), including structural elements that have temperature limits.  The 
limits are typically based on component qualification or certification testing.  Each limit may be 
expressed in terms of a surface temperature or environmental temperature, and may have 
associated time limits.  Instrumentation should be installed to provide data needed to show that 
each component corrected temperature remains below the identified limit.  Accurate and 
calibrated temperature-measuring devices should be used, along with acceptable thermocouples 
or temperature pickup devices.  The temperature pickup should be located at critical engine 
positions.  
 
  (7) Generator.  The alternator/generator should be electrically loaded to the rated 
capacity for the engine/accessory cooling tests.  
 
  (8) Maximum Ambient Atmospheric Temperature.  Section 25.1043(b) establishes 
100° F (38° C) at sea level as the lowest maximum ambient temperature for cooling tests, except 
for winterization installations.  (See paragraph 130b(12) for guidance on certifying winterization 
equipment.)  Applicants may establish a higher temperature limit if desired.  In accordance with 
§ 25.1041, applicants must show that cooling provisions can maintain the temperatures of 
powerplant components, engine fluids, and auxiliary power unit components and fluids within 
the established temperature limit.  The assumed temperature lapse rate is -3.6° F (-2° C) per 
thousand feet of altitude above sea level until a temperature of -69.7° F (-56.5° C) is reached, 
above which altitude the temperature is considered constant at -69.7° F (-56.5° C).  The 
compliance demonstration flight test should be conducted with an ambient temperature as close 
to the desired maximum ambient atmospheric temperature as practical.  If testing is 
accomplished at lower ambient temperatures, then the test data must be corrected to that which 
would have resulted from testing on a day with the maximum ambient atmospheric temperature.  
(See paragraph 130e(2).)  The maximum ambient temperature selected and demonstrated 
satisfactorily, taking account of correction factors, shall not be less than the minimum hot day 
conditions prescribed by § 25.1043(b) and shall be an airplane operating limitation per the 
requirements of § 25.1521(d).  The applicant should correct the engine temperatures to as high a 
value as possible in order to minimize the impact of this limitation. 
 
  (9) Temperature Stabilization.  For the cooling flight tests, a temperature is usually 
considered stabilized when its observed rate of change is less than 2° F per minute.  However, 
regardless of the rate of temperature rise, if a component or fluid temperature is still rising and is 
near the limit for that component or fluid, sufficient test data must be gathered to show that the 
limit will not be exceeded in that steady state operating condition.  A combination of test data 
and rational analysis may be used to determine the maximum temperature expected for a 

 206 



10/16/12  AC 25-7C 

component or fluid rather than continuing a test condition for a long period of time after the rate 
of temperature rise has fallen below 2° F per minute. 
 
  (10) Temperature inversion.  During an inversion, where a layer of colder air is at 
ground level, component temperatures at the beginning of the cooling test climb will be lower 
relative to the ambient air temperature encountered during the climb.  For components that 
require significant time to adjust to ambient temperature changes, the artificially low starting 
temperature may result in erroneous results.  If cooling tests are conducted when an inversion 
exists, the applicant should present a more rational correction method than either the “degree for 
degree” method described in paragraph 130e(2) or the method defined in § 25.1043.  The FAA 
has accepted a correction method that used the difference between the test day ambient and the 
hot day atmospheric temperature taken at the beginning of the flight being used as the correction 
factor for all flight data.  Although conservative, this method accounts for the effects of an 
inversion. 
 
  (11) Airport Altitude.  The cooling tests should be conducted from the lowest practical 
airport altitude, usually below 3,000 feet mean sea level (MSL), to provide test data reasonably 
close to sea level.   
 
  (12) Winterization Equipment Procedures.  The following procedures should be applied 
when certificating winterization equipment:  
 
   (a) Maximum ambient sea level atmospheric temperature less than 100° F (38° C).  
Cooling test results for winterization installations may be corrected to any temperature desired 
by the applicant rather than the conventional 100° F (38° C) hot day.  For example, an applicant 
may choose to demonstrate cooling to comply with requirements for a 50° F (10° C) or 60° F 
(15.5° C) day with winterization equipment installed.  This temperature becomes a limitation to 
be shown in the AFM.  In such a case, the sea level temperature for correction purposes should 
be considered to be the value elected by the applicant with a rate of temperature drop of 3.6° F 
(2° C) per thousand feet above sea level.  
 
   (b)  Tests.  Cooling tests and temperature correction methods should be the same as 
for conventional cooling tests.  
 
   (c) Limit Temperature.  The AFM should clearly indicate that winterization 
equipment should be removed whenever the temperature reaches the limit for which adequate 
cooling has been demonstrated.  The cockpit should be placarded accordingly.  
 
   (d) Equipment Marking.  If practical, winterization equipment, such as baffles for 
oil radiators or for engine cooling air openings, should be marked clearly to indicate the limiting 
temperature at which this equipment should be removed.  
 
   (e) Installation Instructions.  Since winterization equipment is often supplied in kit 
form and accompanied by instructions for its installation, manufacturers should provide suitable 
information regarding temperature limitations in the installation instructions.  
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 c. Ground Test Procedures.  
 
  (1) General.  The flight testing guidance in paragraphs 130b(1), (4), (5), (6), (7), and 
(11) are equally applicable to ground testing.  
 
  (2) Test Conditions.  Ground testing should be conducted with the engine operated at 
idle power or thrust until all critical temperatures have stabilized, followed by operation of the 
engine at rated takeoff power or thrust for 5 minutes, and then idle power or thrust until all 
critical temperatures have stabilized.  
 
  (3) Temperature Stabilization.  During the ground operation portion of the compliance 
demonstration, the definition of stabilized temperatures defined for the flight test (rate of change 
less than 2° F per minute (1o C)) should not be used for determining the maximum component 
temperatures, unless it can be shown that ground operation of the engine is limited to the 
conditions tested.  The reason for using a different definition of stabilized temperatures for 
ground operation is that during sustained ground operations at a particular condition, such as at 
idle power or thrust for using the engines as a pneumatic source, may result in temperatures that 
gradually exceed the defined temperature limits.  To address this concern, some manufacturers 
have used engine operating limitations for ground operations that limit engine operation for 
discrete time periods.  For example, engine operation at takeoff power or thrust may be limited 
to 2 minutes at ambient temperatures above 110° F (43o C), or engine operation at idle power or 
thrust is limited to 2 hours at ambient temperatures above 110° F. 
 
  (4) Temperature Correction.  Recorded ground temperatures should be corrected to the 
maximum ambient temperature selected, without consideration of the altitude temperature lapse 
rate.  For example, if an auxiliary power unit is being tested for ground cooling margins, the 
cooling margin should be determined from the recorded ground temperature without regard to 
the test site altitude.  
 
 d. Data Acquisition.  The following data should be recorded at the time intervals specified 
in the particular test program.  The data may be manually recorded unless the quantity and 
frequency necessitate automatic or semi-automatic means: 
 
  (1) Outside air temperature (OAT);  
 
  (2) Altitude;  
 
  (3) Airspeed (knots);  
 
  (4) Gas generator r.p.m.;  
 
  (5) Engine torque;  
 
  (6) Time;  
 
  (7) Fan r.p.m.;  
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  (8) Engine oil temperature;  
 
  (9) Pertinent engine temperature; and  
 
  (10) Pertinent nacelle and component temperatures.  
 
 e. Data Reduction.  
 
  (1) Purpose.  Seldom is testing actually accomplished at the maximum required 
ambient temperature of at least 100º F at sea level lapsed 3.6º F (2o C) per 1,000 feet pressure 
altitude.  Component and fluid temperatures must therefore be corrected to derive the item 
temperature that would have been reached if the test day had matched exactly the maximum 
ambient temperature day.  The applicant may select a higher maximum ambient temperature for 
cooling certification than the 100º F (38o C) sea level hot day prescribed.  Provisions are also 
made for selecting a maximum ambient temperature less than the 100º F sea level hot day for 
winterization installations not intended to function at the hot day conditions. 
 
  (2) Correction Factors for Ambient Conditions.  Unless a more rational method applies, 
a correction factor of 1.0 is applied to the temperature data as follows:  corrected temperature = 
true temperature + 1.0 [100 - 0.0036 (Hp) - true OAT].  A correction factor other than “degree-
for-degree” should be based on engineering test data.  The corrected temperature is then 
compared with the maximum permissible temperature to determine compliance with the cooling 
requirements.  No corrected temperatures may exceed established limits. 
 
Sample Calculation:  
 
True Temperature  =    300° F (149o C) 
True OAT    =      15° F (-9o C) 
Hp      =  5,000 feet  
 
The corrected temperature = 300 + 1.0 [100 - 0.0036 (5,000) - 15] = 367° F (186o C).  
 
  (3)  Correction Factor for Minimum Engine.  An important correction factor that is not 
discussed in the regulations, but is frequently necessary to show the cooling adequacy required 
by § 25.1041, is the minimum engine (i.e., the thermal limit) correction factor.  This factor is 
sometimes required if, at test day conditions, the engine measured temperature does not 
correspond to the engine temperature that would have occurred on a minimum specification 
engine in hot day conditions.  The correction factor would not apply to those components not 
affected by changes in exhaust gas temperature (EGT) at a constant power or thrust.  Typical 
items expected to be affected by changes in the EGT at constant power or thrust would be engine 
oil temperature, thermocouple harnesses, or other fluid, component, or ambient temperatures in 
the vicinity of the engine hot-section or exhaust gases.  Other items remote from the hot section, 
like the starter-generator or fuel control, would not be expected to be influenced by EGT 
variations; however, the items affected and the magnitude of the factor to be applied should be 
established by testing.  There are several acceptable methods for establishing the appropriate 
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correction factor during development testing.  The general idea is to establish a stabilized flight 
condition, typically during ground runs, and vary the measured EGT at approximately fixed 
power or thrust and OAT conditions.  This may be accomplished by using engine anti-ice bleed 
air, customer bleed air, or by ingesting warmer than ambient air (either an external source or the 
engine bleed air) into the engine inlet.  Care should be used when ingesting warmer than ambient 
air to assure that the warm air is diffused in order to avoid possible engine surge.  If it is not 
possible to attain an adequate variation in EGT by these methods, an acceptable, but 
conservative correction may be obtained by allowing both power or thrust and EGT to vary at 
stabilized engine operating conditions and OAT.  The component temperature is plotted as a 
function of EGT, and the correction from test EGT for any flight condition, to the EGT that 
would have existed with minimum specification engines on a hot day, is then applied to derive 
the corrected component temperature.  Both of these methods assume the inlet air and cooling air 
sources are essentially independent.  Where they are not independent, such as those designs that 
take cooling air from the fan exit stream (e.g., via a fan box in bifurcation) rather than via a free 
stream scoop, care needs to be taken in selecting a technique to assure the results are neither 
overly conservative as may result from use of the hot air technique nor overly optimistic as may 
result from use of the higher power or thrust technique. 
 

Section 6.  Induction System 
 
 
131. Air Induction - § 25.1091. 
 
 a. Explanation - § 25.1091(d)(2).  The turbine engines of transport category airplanes are 
susceptible to surge, stall, and flameout when excessive amounts of water are ingested.  The 
certification requirements for turbine engines include the demonstration of a capability to operate 
in simulated rainfall with no adverse operating effects.  The quantities of water spray that may be 
directed toward the engine inlets, resulting from the airplane passing through standing water on 
taxi and runways, may exceed that used in the simulated rainfall ingestion testing.  This becomes 
particularly important during takeoff, where the engines are operated at high power or thrust 
settings and the airplane will experience a wide range of speeds.  During takeoff and landing 
ground rolls, the airplane’s tires generate bow waves, side spray, and “rooster tails” (spray that is 
thrown off the tires as they rotate), which can collect into concentrated streams of water that, if 
ingested into the engines, APU, or air conditioning systems, could affect operation sufficiently to 
cause an unsafe condition.  Similarly, water ingestion into the airspeed system during ground 
operations may cause errant cockpit indications of airspeed.  It is often practical to investigate 
these effects concurrently with the engine water ingestion evaluation.   
 
 b. References.   
 
  (1) AC 20-124, “Water Ingestion Testing for Turbine Powered Airplanes,” dated 
September 30, 1985. 
 
  (2) AC 91-6A, “Performance Information for Operation with Water, Slush, Snow or 
Ice on the Runway,” dated May 24, 1978. 
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 c. Procedures. 
 
  (1) Method of Compliance.  The applicant may show compliance with the 
requirements of § 25.1091(d)(2) by test or by reasonable analysis.  The analytical approach may 
be acceptable in cases where an airplane and/or its engines were modified, but the overall 
geometry and configuration remained unchanged. 
 
  (2) Water Depth.  Takeoffs should not be attempted when the depth of standing water, 
slush, or wet snow is greater than one-half inch over an appreciable part of the runway (Ref. AC 
91-6A).  Therefore, one-half inch of standing water is the accepted criteria for conducting tests 
to demonstrate compliance with the water ingestion requirements of § 25.1091(d)(2).  Testing 
may be conducted in specially constructed water test beds, where the selected water depth is 
maintained over not less than 90 percent of the test bed area.  If the airplane successfully 
completes testing with a one-half inch water depth, no operating limitations will be imposed for 
wet runway operations.  
 
  (3) Airplane Configuration.  Testing should be conducted to demonstrate all critical 
phases of taxi, takeoff, and landing operations.  High lift devices and landing gear doors should 
be in the position appropriate to each phase of operation tested.  All portions of the airplane that 
may affect water spray patterns should be in the production configuration desired for approval 
(e.g., chine tires, fenders).  The most critical powerplant operating configuration (bleed air, 
electrical load, ignition system, etc.) that is consistent with the applicant’s recommended 
procedures for operation on wet runways should be used. 
 
  (4) Test Facility.  The test facility needs to have adequate space for simulated takeoff 
and landing runs.  Intermediate dams may be used in the water test bed to maintain the selected 
water depth over not less than 90 percent of the test bed area.  The test bed length should not be 
less than that required to produce a spray pattern of one second duration at critical test speeds.  
The test bed width need only accommodate one landing gear, if acceptable data are presented to 
the FAA that show the combined nose and main gear spray is not more hazardous than the spray 
produced by either gear separately. 
 
  (5) Test Procedures.  The tests should be conducted with the appropriate power or 
thrust setting.  To establish the critical speed ranges, test runs should be made through the water 
test bed in speed increments of not more than 20 knots.  If the rotated airplane attitude is 
suspected to be critical, at least one run at VR should be conducted with the airplane rotated to 
the normal rotation pitch attitude.  If thrust reversers or reversing propellers are provided, testing 
should also be conducted with those systems operating. 
 
  (6) Test Data.  The applicant is expected to provide personnel and equipment to collect 
the following data: 
 
   (a) Test Site Data.  The outside air temperature, wind velocity, and water depth 
should be recorded before each test run. 
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   (b) Airplane Performance Data.  The airplane velocity should be recorded when it 
enters and exits the water test bed.  Engine rotor speeds and interstage turbine temperature (ITT) 
or EGT, as applicable) should be recorded and any engine abnormal engine sounds noted. 
 
   (c) Water Spray Pattern.  Appropriate areas of the airplane should be coated with 
agents that will permit identification of water spray impingement.  Suitable high speed 
photography or video equipment should be used to record the origin, trajectory, and 
configuration of the water spray. 
 
   (d) Pilot Comments.  Pilot comments should be noted to determine if the takeoff 
would have been affected by abnormal audible engine sounds, airplane instrument anomalies, 
etc. 
 
  (7) Test Results.  No hazardous quantities of water are considered to have been 
ingested when review of the collected test data shows that: 
 
   (a) No engine flameout, performance degradation, distress, or airspeed 
fluctuations occurred that would create a safety hazard. 
 
   (b) No abnormal engine sounds occurred, such as pops or bangs, or cockpit 
instrument indications of incipient engine surge or stall, or they were not of sufficient magnitude 
to cause a pilot in service to abort the planned operation. 
 
132. Induction System Icing Protection - § 25.1093. 
 
 a. References.   
 
  (1) AC 20-73A, “Aircraft Ice Protection,” dated August 16, 2006. 
 
  (2) AC 20-147, “Turbojet, Turboprop, and Turbofan Engine Induction System Icing 
and Ice Ingestion,” dated February 2, 2004.  
 
 b. Reciprocating Engines - § 25.1093(a). 
 
  (1) Explanation. 
 
   (a) Conditions for tests.  The carburetor air temperature measurement has been 
found to provide satisfactory average readings through the use of a minimum of three 
thermocouples so arranged as to give an average air temperature.  This indicator should be 
calibrated prior to the test.  Operationally, it has been determined that the tests should be 
conducted at an altitude where the free air temperature is 30º F (-1o C), or at two altitudes of 
different temperatures, one of which is near 30º F (-1 oC). 
 
   (b) Configuration.  The test should be conducted in the configuration that follows: 
 
    1 Weight - optional. 
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    2 C.G. Position - optional. 

    3 Wing Flap Position - optional. 

    4 Landing Gear Position - optional. 

    5 Engines - 60 percent maximum continuous power. 

    6 Cowl Flaps - appropriate for flight condition. 

    7 Mixture Setting - normal cruising position. 

 
  (2) Procedures.  Test procedures and required data. 
 
   (a) After all temperatures have stabilized (i.e., when the rate of temperature 
change is less than 2º F (1 oC) per minute), and with the airplane in level flight and full cold 
carburetor at 60 percent maximum continuous power, the following data should be recorded: 
 
    1 Pressure altitude. 

    2 Ambient air temperature. 

    3 Indicated airspeed. 

    4 Carburetor air temperature. 

    5 Engines’ r.p.m. and manifold pressure. 

    6 Torque pressure. 

    7 Mixture setting. 

    8 Cowl flap setting. 

 
   (b) Preheat should then be applied slowly (power may be restored to 60 percent 
maximum continuous at the applicant’s option) and the above data recorded again after the 
temperatures have stabilized.  The carburetor heat rise is determined by comparing the results of 
the data obtained with and without preheat. 
 
 c. Turbine Powered Airplanes - § 25.1093(b). 
 
  (1) Explanation. 
 
   (a) Section 25.1093(b) requires that each turbine engine operate throughout its 
flight power or thrust range without adverse effect on engine operation or serious loss of power 
or thrust in the icing conditions specified, including those related to falling and blowing snow.  
This requirement must be met for all operating conditions of the airplane and is not limited to 
operations where icing can be predicted or when icing penetrations are specifically intended.  It 
is clear that the engines require protection against the possible hazardous effects of ice ingestion 
for all operating conditions, while the remaining airframe need be protected only if certification 
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for flight in icing conditions is desired.  This can also be verified by a review of §§ 25.1093(b), 
25.1419, and 33.68. 
 
   (b) One purpose of flight in natural and/or tanker-provided icing conditions is to 
demonstrate that chunks of ice discharged from unprotected surfaces do not cause damage to the 
engine or other critical parts of the airplane, and to demonstrate that ice discharged from 
protected surfaces after an undetected icing encounter, during which the ice protection system 
was inoperative, does not cause engine damage or malfunction, or damage to other critical parts 
of the airplane.  In order to accomplish these objectives, the airplane should be exposed to an 
icing condition of a magnitude and duration sufficient to accumulate enough ice to produce an 
acceptable demonstration.  If, after installation on the airplane, it is possible for the engines to 
ingest ice shed from the airframe, which will cause an adverse effect or serious loss of power or 
thrust on the engine, compliance with § 25.1093(b) has not been achieved, and the required level 
of airworthiness for the engine installation has not been obtained. 
 
   (c) It has been established from experience that turbine engines can be affected 
seriously and adversely by inadvertent in-flight ice encounters in which only a minor 
performance loss could be attributable to the amount of ice accumulated on the airframe.  Based 
upon this experience, it was deemed necessary to require a higher level of ice protection for the 
engines than was found necessary for the airframe.  The requirements of §§ 25.1093(b), 25.1419, 
and 33.68 reflect this concept.  Satisfactory operation of protected surfaces at the design point 
condition, as described in AC 20-73A, should be demonstrated by icing tunnel tests or by 
analysis supported by tests.  The ability to de-ice and anti-ice protected surfaces should be 
demonstrated during the natural and/or tanker-provided icing tests. 
 
   (d) The secondary effects of falling and blowing snow should also be considered 
in the evaluation of susceptibility to, and protection from, ice accumulations.  The critical 
ambient temperatures should be defined; this evaluation should take into consideration not only 
temperatures in the immediate vicinity of the freezing point, where “wet, sticky snow” is likely, 
but also colder temperatures where snow may adhere to partially heated interior inlet surfaces, 
melt, and refreeze in a colder location.  Any hardware or ancillary systems (e.g., screens, particle 
separators, oil coolers) installed in turbine engine inlets may facilitate the accumulation of snow 
and potential for generation of ice.  The effects of falling and blowing snow should be evaluated 
for both ground and flight conditions.  The number of actual airplane tests within the critical 
snow and temperature environment should be maximized.  In accordance with § 21.35(a)(3), the 
test article must be in production configuration with respect to surface finish, texture, and 
material type, to assure accurate representation of the in-service configuration.  Recognizing that 
the desired atmospheric conditions may be difficult to find, some conditions may be 
substantiated by analysis, provided that analysis is supported by some form of test data (e.g., 
temperature survey data). 
 
   (e) It would be inconsistent to consider that § 25.1093(b) pertains only to the 
engine or engine inlet lip.  The wording is broad and objective.  It should be noted that the icing 
requirements pertaining specifically to the engine are included in § 33.68.  Section 25.1093(b) 
was included to assure that the engine, as installed in the airplane, did not suffer adverse effects 
when the airplane was subjected to the icing envelope requirements covered by appendix C to 
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part 25.  It is not logical to exclude any part of the airplane that might shed ice so as to produce 
an adverse effect on the engine. 
 
   (f) The preceding paragraphs are intended to describe the minimum program to 
achieve certification for flight in icing conditions. 
 
  (2) Procedures.  None. 
 
[133. - 136.] [Reserved] 

 
 

Section 7.  Exhaust System 
 
 
137. General - § 25.1121. 
 
 a. Explanation.  Section 25.1121(a) - Carbon monoxide contamination.  Carbon monoxide 
detection tests are conducted in accordance with this requirement to determine that the disposal 
of exhaust gases from each exhaust system does not cause carbon monoxide contamination of 
any personnel compartment.   
 
 b. References.  Also see information related to the evacuation of other personnel 
compartment atmosphere contaminants contained in paragraphs 84 and 165 of this AC 
addressing the requirements of §§ 25.831 and 25.1197, respectively. 
 
[138. - 140.] [Reserved] 
 
 

Section 8.  Powerplant Controls and Accessories 
 
 
[141. - 154.] [Reserved] 

 
 

Section 9.  Powerplant Fire Protection 
 
 
[155. - 158.] [Reserved] 
 
 
159. Drainage and Ventilation Of Fire Zones - § 25.1187.  
 
 a. Explanation.  The rule requires that each part of each designated fire zone be drained 
completely of flammable fluids to minimize hazards resulting from malfunctioning or failing 
components that contain flammable fluids.  The drainage means must be:  
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  (1) Effective under conditions expected to prevail when drainage is needed;  

  (2) Arranged so that no discharged fluid will cause an additional fire hazard; and 

  (3) Arranged so that no discharged fluid will enter any other fire zone.  

 
[160. - 164.] [Reserved] 
 
165. Fire Extinguishing Systems - § 25.1197. 
 
 a. Explanation.  Carbon Dioxide in Flightcrew Compartments.  Carbon dioxide has been 
found to adversely affect flightcrew personnel in the performance of their duties.  Therefore, in 
airplanes equipped with built-in carbon dioxide fuselage compartment fire extinguisher systems, 
the carbon dioxide concentration occurring at the flightcrew stations as a result of discharging 
the fire extinguishers should be determined in accordance with the procedures of this section 
(also see paragraph 84 of this AC), except that such determination is not considered necessary if: 
 
  (1) Five pounds or less of carbon dioxide will be discharged into any one such fuselage 
compartment in accordance with established fire control procedures; or 
 
  (2) Protective breathing equipment is provided for each flight crewmember on flight 
deck duty. 
 
 b. Procedures.  Flight Test Investigation. 
 
  (1) The carbon dioxide concentrations at breathing level at the flightcrew stations 
should be determined in flight tests during which fuselage compartment fire extinguishers are 
discharged in accordance with established fire control procedures.  Since carbon dioxide is 
heavier than air, a nose-down attitude is likely to produce the critical concentrations in the crew 
compartment.  Perform the tests described in paragraphs (2) and (3) below. 
 
  (2) A rapid descent at the “maximum operating limit speed” of the airplane with the 
flaps and landing gear up. 
 
  (3) A rapid descent with the flaps and landing gear down, at the maximum permissible 
speed for this configuration.  If it appears that any other condition is likely to be critical on a 
particular airplane, it should also be investigated. 
 
  (4) In the flight tests specified above, it will be permissible to institute emergency 
ventilating procedures immediately prior to or following the discharge of carbon dioxide, 
provided such procedures can be accomplished easily and quickly by the flightcrew, and do not 
appreciably reduce the effectiveness of the fire protection system. 
 
  (5) If the measured carbon dioxide concentrations exceed three percent by volume 
(corrected to sea level, standard day conditions), protective breathing equipment should be 
provided for each flight crewmember on flight deck duty. 
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  (6) Appropriate emergency operating procedures should be entered in the AFM. 
 
[166. - 169.] [Reserved] 
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Chapter 6 - Equipment 
 
 

Section 1.  General 
 
 
170. Equipment - Function and Installation - § 25.1301. 
 
 a. Explanation. 
 
  (1) Certification of the installation of modern avionics/electrical systems on airplanes 
can be summarized, generally, by stating that the systems/equipment must: 
 
   (a) Perform its intended function (§ 25.1301); 
 
   (b) Be adequately protected for failure conditions (§ 25.1309); 
 
   (c) Be arranged to provide proper pilot visibility and utilization (as appropriate) 
(§ 25.1321); 
 
   (d) Be protected by circuit breakers to preclude failure propagation and/or 
minimize distress to the airplane’s electrical system (§ 25.1357); and 
 
   (e) Be installed in a manner such that operation of the system will not adversely 
affect the simultaneous operation of any other system (§ 25.1431). 
 
  (2) Accordingly, the recommended flight test procedures for equipment covered in 
subpart F of part 25 (excluding powerplant instruments, airspeed calibration, safety equipment, 
and lights) are grouped together under this section and are organized as follows: 
 
   Para. b. Communication Systems. 
   Para. c. Navigation Systems. 
   Para. d. Instruments and Displays. 
   Para. e. Sensors and Warning Systems. 
   Para. f. Recording Systems. 
   Para. g. Engine Interfacing Systems (autothrottle, power/thrust rating, ATTCS, 
etc.). 
   Para. h. Stability Augmentation Systems. 
   Para. i. All Weather Operation (Reduced Visibility) Systems. 
 
  (3) Section 25.1301 refers to each item of installed equipment.  Type certification 
involving equipment approvals is governed by Title 49 United States Code, section 44704.  That 
section requires the Administrator to make, or require the applicant for a type certificate to make, 
such tests “necessary in the interest of safety.”  Tests may be necessary in order to allow the 
Administrator to find that the aircraft is properly designed and manufactured, performs properly, 
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and meets the regulations and minimum standards prescribed under section 44701(a) of Title 49.  
“Optional equipment,” however, is not a term that is meaningful under the Act in connection 
with the type certification of any given airplane.  Where equipment or a system is a part or 
appurtenance of the airplane and is designed to aid and will obviously be used by the crew, the 
statutorily required tests and findings are the same, regardless of whether or not it is 
characterized as optional.  Moreover, the regulatory requirement of § 21.21(b)(2) specifies that 
the Administrator must find that no feature or characteristic of the airplane makes it unsafe for 
the category in which certification is requested.  Therefore, the extent to which that equipment 
needs to be tested or evaluated, in order that the Administrator may make the necessary finding 
with respect to the whole airplane, is a technical determination within the engineering and 
operational expertise of the Administrator.  (See AC 20-68, “Certification Guidance for 
Installation of Non-Essential, Non-Required Aircraft Cabin Systems & Equipment (CS&E),” 
dated July 22, 2010, for further information.) 
 
  (4) Criteria and requirements for flight should consider the applicant’s engineering 
analysis and laboratory (simulator) test program.  The combination of analysis, laboratory, and 
flight evaluation will form the whole of the certification requirement and, as such, should be in 
harmony and provide full evaluation.  The flight evaluations supplement the analysis and 
simulation as required in both the representative operating conditions of the airplane and for 
analysis of the airplane modes of operation and configuration conditions. 
 
  (5) The requirement for demonstrating safe operation should normally include induced 
failures during flight.  The requirement for failure demonstrations is also an outgrowth of the 
analysis and laboratory test results submitted by the applicant and is a result of the particular 
design being evaluated (e.g., consideration should be made for multiple channel systems 
specifically designed to be self-adaptive to failure conditions).  Performance and malfunctions 
testing should include those flight conditions and airplane configurations that have been 
identified to be the most critical by analysis and/or test.  Such items as weight, c.g., speed, 
altitude, flaps, slats, gear, speed brakes, and airplane system degradation should be considered. 
 
  (6) The amount of flight testing should be determined through the cooperative efforts 
of the assigned project personnel.  It is recommended that the procedures that follow be used as a 
guide in preparing for the flight testing of an initial certification program.  Follow-on items 
relevant to system derivative certification may result in considerably reduced flight testing.  
However, sufficient testing should be accomplished to assure satisfactory performance.  When 
ground or flight test data, available from similar previously approved installations, are sufficient 
to properly evaluate a system’s performance, additional testing may not be required.  In the 
absence of such data, additional testing or analysis should be presented to substantiate the areas 
potentially affected. 
 
  (7) Particular attention should be given to those installations where an external piece of 
gear, such as an antenna, could affect the flight characteristics.  All installations of this nature 
should be evaluated by the flight test pilot. 
 
  (8) Installations that can or may change the established limitations, flight 
characteristics, performance, operating procedures, or any required systems require approval by 
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an FAA ACO flight test branch.  New installations of equipment in the cockpit, or modifications 
that affect existing equipment in the cockpit, should be evaluated through the cooperative efforts 
of the FAA, the project engineer, and the assigned flight test pilot, and assessed for the need of 
an FAA flight test demonstration. 
 
  (9) Throughout the systems/equipment evaluation, the operation of annunciators 
should be assessed to determine that proper conspicuity and display are provided to the 
appropriate flight crewmember.  Any mode of operation selected by a manual action, or 
automatically, should be positively identified.  Any submode should be evaluated to determine 
the need for annunciation. 
 
 b. Procedures - Communications. 
 
  (1) Very high frequency (VHF) Systems. 
 
   (a) Airplanes to be operated above 18,000 ft.  Intelligible communications should 
be provided between the airplane and facilities throughout circle-turns within 160 NM of an 
FAA approved ground facility and above minimum radio line-of-sight with no intervening 
terrain.  Bank angles up to 10 degrees on all headings should be used.  Drop outs that are 
relieved by a reduction in bank angle at the same relative heading to the station are satisfactory.  
It is suggested that the “Long Range Reception Test” of paragraph (d), below, be conducted first.  
If this test is successful, the circle-turns (within 160 NM) of this paragraph need not be 
conducted.  Skidding turns may be used to minimize turn radius.) 
 
   (b) Airplanes to be operated below 18,000 ft.  For airplanes limited to operation 
below 18,000 ft., intelligible communications should be provided as given in (i) above, except 
that the distance from the ground facility need not exceed 80 NM. 
 
   (c) Antenna Coverage Measurement.  If the antenna is located on the airplane 
centerline, tests may be conducted using only one direction of turn.  When antenna radiation 
pattern data are available, flight testing in a 360 degree turn may not be necessary, if satisfactory 
communication is achieved during checks in the vicinity of the predicted bearings and bank 
angles of worst performance. 
 
   (d) Long Range Reception.  At a distance of at least 160 NM (or 80 NM for 
airplanes to be operated below 18,000 ft.) from the ground facility antenna on a heading and 
above radio line-of-sight, perform a right and/or left 360 degree turn at a bank angle of at least 
10 degrees.  Communicate with the ground facility every 10 degrees of turn to test the 
intelligibility of the signals received at the ground station and in the airplane.  The minimum 
line-of-sight altitude for 160 NM is approximately 17,000 ft. and for 80 NM is approximately 
4,000 ft.  Radio line-of-sight distances vs. flight level (or altitude) are given in the following 
table: 
 

 220



10/16/12  AC 25-7C  

 
 

Table  170-1 Radio Line-of-Sight Distance vs. Flight Level or Altitude 
  

Flight Level or 
Altitude in Feet 

Radio Line-of-
Sight in Nautical 

Miles 

Flight Level or 
Altitude in Feet 

Radio Line-of-Sight 
in Nautical Miles 

FL500 275.0 FL260 198.3 
FL490 272.3 FL250 194.5 
FL480 269.5 FL240 190.6 
FL470 266.7 FL230 186.5 
FL460 263.8 FL220 182.4 
FL450 260.9 FL210 178.2 
FL440 258.0 FL200 173.9 
FL430 255.1 FL190 169.5 
FL420 252.1 FL180 165.0 
FL410 249.1 17,000 160.4 
FL400 246.0 16,000 155.6 
FL390 242.9 15,000 150.6 
FL380 239.8 14,000 145.5 
FL370 236.6 13,000 140.2 
FL360 233.4 12,000 134.7 
FL350 230.1 11,000 129.0 
FL340 226.8 10,000 123.0 
FL330 223.4 9,000 116.7 
FL320 220.0 8,000 110.0 
FL310 216.6 7,000 102.9 
FL300 213.0 6,000 95.3 
FL290 209.5 5,000 87.0 
FL280 205.8 4,000 77.8 
FL270 202.1 3,000 67.4 

 
   (e) High Angle Reception.  Repeat the above test at a distance of 50 to 70 NM 
from the ground station and at an altitude of 35,000 ft., or the maximum operating altitude of the 
airplane (20 to 30 NM for airplanes to be operated below 18,000 ft.). 
 
   (f) Approach Configuration.  With the landing gear extended and the flaps in the 
approach configuration, demonstrate intelligible communications between the airplane and the 
ground facility. 
 
   (g) Electromagnetic Compatibility (EMC).  With all systems operating in flight, if 
practicable, verify, by observation, that no adverse effects are present in the required flight 
systems. 
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  (2) High Frequency (HF) Systems. 
 
   (a) Acceptable communication should be demonstrated by contacting  
one or more ground stations on several of the frequencies allowed by HF propagation conditions.  
Distances may vary from 100 to several thousand NM, and at least one over-the-horizon 
communication link should be established via ionospheric propagation.  When a new HF antenna 
installation is being evaluated, the test should be conducted at an altitude of not less than 90 
percent of the maximum altitude to check for possible corona arcing at the antenna. 
 
   (b) The effect of precipitation static should be considered.  This type of static is 
normally found in areas of high cirrus clouds, dry snow, dust storms, etc. 
 
   (c) EMC should be evaluated with all systems operating in flight, if practicable, to 
verify, by observation, that no adverse effects are present in the required flight systems. 
 
   (3) Audio Systems. 
 
   (a) Acceptable communications should be demonstrated for all audio equipment, 
including microphones, speakers, headsets, interphone amplifiers, and public address systems.  If 
provisions for passenger entertainment are included, adequate override of the music/audio by the 
cockpit crew attendants, or by prerecorded announcements, should be demonstrated.  All modes 
of operation should be tested, including operation during emergency conditions (e.g., emergency 
descent with oxygen masks) with all airplane engines running, all airplane pulse equipment 
transmitting, and all electrical equipment operating.  Flight tests, except as described in (b) 
below, are generally not necessary unless airstream noise is considered a factor or unless 
excessive feedback with cockpit speakers is encountered during ground tests, which makes 
cockpit sound levels questionable. 
 
   (b) If a flight evaluation of the PA system is deemed to be necessary (or the 
prudent thing to do), PA announcements should be made from each handset station, including 
the cockpit, with the airplane operated at mid to high altitude at speeds approaching VMO/MMO. 
 
   (c) EMC should be evaluated with all systems operating during flight, verify, by 
observation, that no adverse effects are present in the required flight systems. 
 
  (4) Aircraft Communication Addressing and Reporting System (ACARS).  ACARS is 
an addressable VHF digital data link system that permits communication between the airplane 
and a ground-based facility.  The display medium is a printer and/or electronic multifunction 
display. 
 
   (a) Acceptable performance should be demonstrated by verifying that pre-flight 
loaded data is retained in memory during power interrupts generated during transfers from 
ground to APU power, from APU to engine generators, and during cross-tie switching in all 
possible combinations. 
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   (b) Verify that simultaneous transmission of aircraft communications addressing 
and reporting system (ACARS) data and VHF voice communication is satisfactory and is free of 
interference between the two independent VHF systems, considering frequency and VHF 
antenna isolation.  Exercise all possible switching combinations. 
 
   (c) If the selective calling system (SELCAL) can be initiated by the ground 
station via the ACARS data link, demonstrate performance of that function by observing that the 
cockpit aural and visual indications are proper. 
 
   (d) If the flight management system (FMS) database or operational program can 
be accessed in flight by ACARS, exercise all interface functions to demonstrate performance of 
the intended function. 
 
   (e) ACARS should not cause interference with the operation of any of the 
airplane’s radio/navigation systems.  Particular attention should also be devoted to non-
interference with flight guidance takeoff and approach functions, particularly autoland, since 
these are likely flight regimes for ACARS transmissions. 
 
  (5) SELCAL.  Verify performance of intended function of the SELCAL by receipt of 
VHF and HF (if appropriate) calls from ground stations. 
 
  (6) Satellite Communications (SATCOM).  [Reserved] 
 
  (7) Portable Battery-Powered Megaphones. 
 
   (a) Conduct hearing range and intelligibility tests on the airplane to demonstrate 
that the amplified speech is heard and clearly understood throughout the interior cabin region 
served by the megaphones, with the engines off and with all significant conditions associated 
with an accident (including the presence of passengers and the normally-attendant confusion din) 
appropriately simulated. 
 
   (b) Verify that the megaphone reliably performs its intended function and is 
designed: 
 
    1 For ease of handling, and use, with one hand; 
 
    2 With sufficient acoustical feedback suppression; and 
 
    3 With a volume control. 
 
 c. Procedures - Navigation. 
 
  (1) Very High Frequency Omnidirectional Range (VOR) Systems. 
 
   (a) These flight tests may be reduced if adequate antenna radiation pattern studies 
have been made and these studies show the patterns to be without significant holes (with the 
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airplane configurations used in flight, i.e., flaps, landing gear, etc.).  Particular note should be 
made in recognition that certain propeller r.p.m. settings may cause modulation of the course 
deviation indication (prop-modulation).  This information should be presented in the AFM. 
 
    1 The airborne VOR system should operate normally with warning flags 
out of view at all headings of the airplane (wings level) throughout the airspace within 160 NM 
of the VOR facility (for airplanes to be operated above 18,000 ft.), from the radio line-of-sight 
altitude to within 90 percent of the maximum altitude for which the airplane is certified or the 
maximum operating altitude. 
 
    2 The accuracy determination should be made such that the indicated 
reciprocal agrees within 2 degrees.  The test should be conducted over at least two known points 
on the ground such that data are obtained in each quadrant.  Data should correlate with the 
ground calibration and in no case should the absolute error exceed ±6 degrees.  There should be 
no excessive fluctuation in the course deviation indications. 
 
   (b) En route Reception.  Fly from a VOR facility rated for high altitude along a 
radial at an altitude of 35,000 ft. (or to within 90 percent of the airplane maximum certificated 
altitude or the maximum operating altitude) to a range of 160 NM (80 NM for airplanes not to be 
operated above 18,000 ft.).  The VOR warning flag should not come into view, nor should there 
be deterioration of the station identification signal.  The course width should be 20 degrees ±5 
degrees (10 degrees either side at the selected radial).  If practical, perform an en route segment 
on a Doppler VOR station to verify the compatibility of the airborne unit.  Large errors have 
been found when incompatibility exists. 
 
   (c) Long Range Reception.  Perform a right and/or left 360 degree turn at a bank-
angle of at least 10 degrees, at an altitude above the radio line-of-sight, and at a distance of at 
least 160 NM (80 NM for airplanes to be operated below 18,000 ft.) from the VOR facility.  
Signal dropout should not occur as evidenced by the malfunction indicator appearance.  
Dropouts that are relieved by a reduction of bank angle at the same relative heading to the station 
are satisfactory.  The VOR identification should be satisfactory during the left and right turns.  
Skidding turns may be used to minimize turn radius. 
 
   (d) High Angle Reception.  Repeat the turns described in paragraph (c) above, but 
at a distance of 50 to 70 NM (20 to 30 NM for airplanes not to be operated above 18,000 ft.) 
from the VOR facility and at an altitude of at least 35,000 ft. (or to within 90 percent of the 
maximum certificated altitude of the airplane or the maximum operating altitude). 
 
   (e) En route Station Passage.  Verify that the TO-FROM indicator correctly 
changes as the airplane passes through the cone of confusion above a VOR facility. 
 
   (f) VOR Approach.  Conduct VOR approach(es) with gear and flaps down.  The 
facility should be 12-15 NM behind the airplane with the approach conducted after a 30 degree 
radial change over the station.  Use sufficient maneuvering in the approach to assure the signal 
reception is maintained during beam tracking. 
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   (g)  EMC should be evaluated with all systems operating in flight, to verify by 
observation that no adverse effects are present in the required flight systems. 
 
   (h)   Identifier.  The audio identifier should be checked, as should the decoded 
identifier, if equipped with a digital bus. 
 
   (i)   Station tuning.  Evaluate various methods of station tuning, including 
automatic and manually through a FMS.  Also, a check for proper indications for loss of signal 
or receiver failure should be done. 
  
  (2) Localizer Systems. 
 
   (a) These flight tests may be reduced if adequate antenna radiation pattern studies 
have been made, and those studies show the patterns to be without significant holes.  A 
significant hole is one that is greater than 10 decibels (dB) from the average within 30 degrees 
horizontally and 15 degrees vertically of the nose of the airplane. 
 
    1 The signal input to the receiver, presented by the antenna system, should 
be of sufficient strength to keep the malfunction indicator out of view when the airplane is in the 
approach configuration (landing gear extended-approach flaps) and at least 25 NM from the 
station.  This signal should be received for 360 degrees of airplane heading at all bank angles up 
to 10 degrees left or right, at all normal pitch attitudes, and an altitude of approximately 2,000 ft. 
 
    2 Satisfactory results should also be obtained at bank angles up to 30 
degrees, when the airplane heading is within 60 degrees of the inbound localizer course.  Results 
should be satisfactory with bank angles up to 15 degrees on headings from 60 degrees to 90 
degrees of the localizer inbound course, and up to 10 degrees bank angle on headings from 90 
degrees to 180 degrees from the localizer inbound course. 
 
    3 The deviation indicator should properly direct the airplane back to course 
when the airplane is right or left of course. 
 
    4 The station identification signal should be of adequate strength and 
sufficiently free from interference to provide positive station identification, and voice signals 
should be intelligible with all electrical equipment operating and pulse equipment transmitting. 
 
   (b) Localizer Intercept.  In the approach configuration and at a distance of at least 
25 NM from the localizer facility, fly toward the localizer front course, inbound, at an angle of at 
least 50 degrees.  Perform this maneuver from both left and right of the localizer beam.  No flags 
should appear during the time the deviation indicator moves from full deflection to on-course. 
 
   (c) Localizer Tracking.  While flying the localizer inbound and not more than 5 
miles before reaching the outer marker, change the heading of the airplane to obtain full needle 
deflection; then fly the airplane to establish localizer on-course operation.  The localizer 
deviation indicators should direct the airplane to the localizer on-course.  Perform this maneuver 
with both a left and a right needle deflection.  Continue tracking the localizer until over the 
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transmitter.  Acceptable front course and back course approaches should be conducted to 200 ft. 
or less above the threshold. 
 
   (d) Electromagnetic Compatibility (EMC).  With all systems operating in flight, 
verify by observation that no adverse effects are present in the required flight systems. 
 
  (3) Glideslope Systems. 
 
   (a) These flight tests may be reduced if adequate antenna radiation pattern studies 
have been made, and those studies show the patterns to be without significant holes.  A 
significant hole is one that is greater than 10 db from the average within 30 degrees horizontally 
and 15 degrees vertically of the nose of the airplane. 
 
    1 The signal input to the receiver should be of sufficient strength to keep 
the warning flags out of view at all distances up to 10 NM from the final approach fix.  This 
performance should be demonstrated at all airplane headings between 30 degrees right and left of 
the localizer course.  The deviation indicator should properly direct the airplane back to the 
glideslope path when the airplane is above or below the path. 
 
    2 Interference with the navigation operation should not occur with all 
airplane equipment operating and all pulse equipment transmitting.  There should be no 
interference with other equipment as a result of glideslope operation. 
 
   (b) Glideslope Interception.  Fly the localizer course inbound, at the altitude at 
which the glideslope beam intercepts the final approach fix, and at least 10 NM from the fix.  
The glideslope deviation indicator should be centered (± 25 percent of full scale) at the final 
approach fix.  There should be no flags from the time the needle leaves the full scale fly-up 
position until it reaches the full scale fly-down position. 
 
   (c) Glideslope Tracking.  While tracking the glideslope, maneuver the airplane 
through normal pitch and roll attitudes.  The glideslope deviation indicator should show proper 
operation with no flags.  Acceptable approaches to 100 ft. or less above the threshold should be 
conducted. 
 
   (d) EMC should be evaluated with all systems operating in flight, to verify by 
observation that no adverse effects are present in the required flight systems. 
 
  (4) Marker Beacon System. 
 
   (a) In low sensitivity, the marker beacon annunciator light should be illuminated 
for a distance of 2,000 to 3,000 ft. when flying at an altitude of 1,000 ft. on the localizer 
centerline in all flap and gear configurations. 
 

NOTE: An acceptable test to determine distances of 2,000 to 3,000 ft. is to fly at 
a ground speed listed in Table 170-2 and time the marker beacon light duration. 
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Table 170-2  Marker Beacon System 
 

Altitude = 1,000 ft. (AGL) 
 
    Ground Speed (Knots)   Light Time (Seconds) 
 
                Distance → 2,000 ft. 3,000 ft. 
 
        90                13     20 
      110                11     16 
      130                    9         14 
      150                    8     12 
 
 For ground speeds other than the values in Table 170-2, the following formulas may be 
used: 

Upper limit
1775

Ground Speed in Knots
(secs.)   

 

Lower limit
1183

Ground Speed in Knots
(secs.)   

 
   (b)   If a high/low sensitivity feature is installed and selected, the marker beacon 
annunciator light and audio will remain on longer than when in low sensitivity. 
 
   (c) The audio signal should be of adequate strength and sufficiently free from 
interference to provide positive identification. 
 
   (d) As an alternative procedure, cross the outer marker at normal ILS approach 
altitudes and determine adequate marker aural and visual indication. 
 
   (e) Illumination should be adequate in bright sunlight and at night. 
 
   (f) EMC should be evaluated with all systems operating in flight to verify by 
observation that no adverse effects are present in the required flight systems. 
 
  (5) Automatic Direction Finder (ADF) System. 
 
   (a) Receiving Function.  Determine that, when flying toward or away from a 
station with all required electrical and radio equipment in operation, the average bearing pointer 
indications are such that they present a usable bearing at the below-listed distances, during 
daylight hours (between one hour after local sunrise and one hour before local sunset) and when 
atmospheric disturbances are at a minimum.  The amplitude of pointer oscillation is relatively 
unimportant, provided a valid direction to the station can be determined.  At the distances shown 
below, the tone audio identification of the station to which the receiver is tuned should be 
intelligible. 
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   (b) General Information. 
 

  Table 170-3  Classification of LF/MF Radio Beacons in U.S. National Service 
 
   Class   Power (watts) 
 
   Comlo     under 25 
   MH      under 50 
   H       50-1999     
   HH      2000 or more 
 
         Facility                     Range        

 Compass Locators    15 Nautical miles 
 Transmitters        <50 watts   25 Nautical miles 
 Transmitters 100-200 watts   50 Nautical miles 
 Transmitters 200-400 watts   60 Nautical miles 
 Transmitters over 400 watts  75 Nautical miles 
 
 

NOTE: In areas where the known service range is less than the above distances, 
the actual shorter range may be used.  It is advisable to ascertain the operating 
status of the facility to be used, prior to flight testing. 

 
   (c) Pointer Reversal.  While flying the airplane directly over a properly operating 
ground-based station, note the airplane’s altitude and measure the complete pointer reversal time 
by using a stopwatch.  Using the airplane’s true ground speed and the airplane’s altitude, 
determine that the pointer reversal occurred within a circular area centered over the station, 
having a radius equal to the altitude being flown.  Partial reversals that lead or lag the main 
reversal are permissible. 
 
   (d) Bearing Accuracy.  Using a properly operating directional gyro, and a ground 
checkpoint whose location is known with respect to the ground-based station to which the ADF 
is tuned, fly the airplane over the ground checkpoint at a minimum of six airplane headings 
(relative to the station to which the ADF is tuned), including headings of 0 degrees, 180 degrees, 
and headings 15 degrees each side thereof.  Determine that the compensated or otherwise 
corrected ADF bearing indication is not in error by more than ±5 degrees at any of the six 
headings.  Repeat the foregoing procedure but fly at a minimum of six headings relative to the 
ground based station, including 45 degrees, 90 degrees, 135 degrees, 225 degrees, 270 degrees, 
and 315 degrees.  In this case, the compensated or otherwise corrected bearing indication should 
not be in error by more than ±10 degrees at any of these six headings. 
 

NOTE: The distance between the ground checkpoint and the ground-based 
station used should be at least one-half of the service range of that station. 
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   (e) Indicator Response.  With the ADF indicating station dead ahead, switch to a 
station having a relative bearing of 175 degrees.  The indicator should indicate within ±3 degrees 
of the bearing in not more than 10 seconds. 
 
   (f) Antenna Mutual Interaction.  If the ADF installation being tested is dual, 
check for coupling between the antennas by using the following procedures. 
 
    1 With #1 ADF receiver tuned to a station near the low end of the ADF 
band, tune the #2 receiver slowly throughout the frequency range of all bands and determine 
whether the #1 ADF indicator is adversely affected. 
 
    2 Repeat 1 with the #1 ADF receiver tuned to a station near the high end of 
the ADF band. 
 
   (g)  EMC should be evaluated with all systems operating in flight, to verify by 
observation that no adverse effects are present in the required flight systems. 
 
   (h)  Precipitation Static.  The effect of precipitation static should be considered.  
This type of static is normally found in areas of high cirrus clouds, dry snow, dust storms, etc. 
 
  (6) Distance Measuring Equipment (DME). 
 
   (a) Airplanes to be operated above 18,000 ft.  The DME system should continue 
to track without dropouts when the airplane is maneuvered throughout the airspace within 160 
NM of the VORTAC station and at altitudes above radio line-of-sight up to the maximum 
altitude for which the airplane is certificated.  This tracking standard should be met with the 
airplane: 
 
    1 In cruise configuration. 
 
    2 At bank angles up to 10 degrees (skidding turns may be used to minimize 
turn radius). 
 
    3 Climbing and descending at normal maximum climb and descent 
attitudes. 
 
    4 Orbiting a DME facility. 
 
    5 Providing clearly intelligible (visual/aural) identification of the DME 
facility. 
 
   (b) Airplanes to be operated at altitudes below 18,000 ft.  The DME system 
should perform as specified in paragraph (a) above, except that the maximum distance from the 
DME facility need not exceed 100 NM. 
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   (c) Climb and Maximum Distance.  Determine that there is no mutual interference 
between the DME system and other equipment aboard the airplane.  Beginning at a distance of at 
least 10 NM from a DME facility and at an altitude of 2,000 ft. above the DME facility, fly the 
airplane on a heading so it will pass over the facility.  At a distance of 5 to 10 NM beyond the 
DME facility, operate the airplane at its normal maximum climb attitude, up to an altitude of 
35,000 ft. or to within 90 percent of the maximum certificated altitude, maintaining the airplane 
on a station radial (within 5 degrees).  The DME should continue to track with no unlocks to a 
range of 160 NM (100 NM for airplanes not to be operated at altitudes above 18,000 ft.). 
 
   (d) Long Range Reception.  Perform two 360 degree turns, one to the right and 
one to the left, at a bank angle of 8 to 10 degrees at not less than 160 NM (100 NM for airplanes 
not to be operated above 18,000 ft.) from the DME facility.  A single turn will be sufficient if the 
antenna installation is symmetrical.  There should be no more than one unlock, not to exceed one 
search cycle (maximum 35 seconds) in any five miles of radial flight.  Tests may be conducted 
up to a maximum certificated altitude. 
 
   (e) High Angle Reception.  Repeat the flight pattern and observations of 
paragraph (d) above at a distance of 50-70 NM (20 to 30 NM for airplanes not to be operated 
above 18,000 ft.) from the DME facility and at an altitude of at least 35,000 ft. (or to within 90 
percent of the maximum altitude for which the airplane is certificated or the maximum operating 
altitude). 
 
   (f) Penetration.  From an altitude of at least 35,000 ft. (or the airplane maximum 
altitude, if lower), perform a letdown directly toward the ground station using normal maximum 
rate of descent procedures to a DME facility, so as to reach an altitude of 5,000 ft. above the 
DME facility 5 to 10 NM before reaching the DME facility.  The DME should continue to track 
during the maneuver with no unlocks. 
 
   (g)  Orbiting.  At an altitude of 2,000 ft. above the terrain, at holding pattern speeds 
appropriate for the type of airplane and with the landing gear extended, fly at least 15 degree 
sectors of left and right 35 NM orbital patterns around the DME facility.  The DME should 
continue to track with no more than one unlock, not to exceed one search cycle, in any 5 miles of 
orbited flight. 
 
   (h)  Approach.  Make a normal approach to a field with a DME.  The DME should 
track without an unlock (station passage excepted). 
 
   (i)  EMC should be evaluated with all systems operating in flight to verify by 
observation that no adverse effects are present in the required flight systems. 
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  (7) Transponder Equipment. 
 
   (a) The air traffic control (ATC) transponder system should furnish a strong and 
stable return signal to the interrogating radar facility when the airplane is flown in straight and 
level flight throughout the airspace within 160 NM of the radar station, from radio line-of-sight 
to within 90 percent of the maximum altitude for which the airplane is certificated or to the 
maximum operating altitude.  Airplanes to be operated at altitudes not exceeding 18,000 ft. 
should meet the above requirements to only 80 NM. 
 
   (b) When the airplane is flown in the following maneuvers within the airspace 
described above, the dropout time should not exceed 36 seconds: 
 
    1 In turns at bank angles up to 10 degrees (skidding turns may be used to 
minimize turn radius). 
 
    2 Climbing and descending at typical climb and descent attitudes. 
 
   (c) Climb and Distance Coverage. 
 
    1 Beginning at a distance of at least 10 NM from, and at an altitude of 
2,000 ft. above that of the radar facility, and using a transponder code assigned by the air route 
traffic control center (ARTCC), fly on a heading that will pass the airplane over the facility.  
Operate the airplane at its normal maximum climb attitude up to within 90 percent of the 
maximum altitude for which the airplane is certificated, or to a maximum operating altitude, 
maintaining the airplane at a heading within five degrees from the radar facility.  After reaching 
the maximum altitude for which the airplane is certificated, fly level at the maximum altitude to 
160 NM (or 80 NM for airplanes to be operated below 18,000 ft.) from the radar facility. 
 
    2 Communicate with the ground radar personnel for evidence of 
transponder dropout.  During the flight, check the “ident” mode of the ATC transponder to 
assure that it is performing its intended function.  Determine that the transponder system does 
not interfere with other systems aboard the airplane and that other equipment does not interfere 
with the operation of the transponder system.  There should be no dropouts, that is, when there is 
no return for two or more sweeps.  If ring-around, spoking, or clutter appears on the ground radar 
scope, the airplane should switch to “low” sensitivity to reduce the interference.  Uncontrollable 
ringing that hinders use of the ground radar should be considered unsatisfactory. 
 
   (d) Long Range Reception.  At 90 percent of maximum certificated altitude, 
perform two 360 degree turns, one to the right and one to the left, at bank angles of 8 degrees 
and 10 degrees with the flight pattern at least 160 NM (or 80 NM for airplanes to be operated 
below 18,000 ft.) from the radar facility.  During these turns, the radar display should be 
monitored and there should be no signal dropouts (two or more sweeps).  (Airspeed adjustments 
may be made to reduce turn radius.) 
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   (e) High Angle Reception.  Repeat the flight pattern and observations of 
paragraph (d), above, at a distance of 50 to 70 NM from the radar facility and at an altitude of at 
least 35,000 ft. or within 90 percent of the maximum altitude for which the airplane is 
certificated or the maximum operating altitude.  There should be no dropout (two or more 
sweeps).  Switch the transponder to a code not selected by the ground controller.  The airplane 
secondary return should disappear from the scope.  The controller should then change his control 
box to a common system and a single slash should appear on the scope at the airplane’s position.  
If a problem surfaces, a placard so noting should be required. 
 
   (f) High Altitude Cruise.  Fly the airplane within 90 percent of its maximum 
certificated altitude or its maximum operating altitude beginning at a point 160 NM (or 80 NM 
for airplanes to be operated below 18,000 ft.) from the radar facility on a course that will pass 
over the radar facility.  There should be no transponder dropouts (two or more sweeps) or “ring-
around,” except when station passage occurs or when known site features produce anomalies.  
 
   (g)  Holding and Orbiting Patterns. 
 
    1 At an altitude of 2,000 feet or minimum obstruction clearance altitude 
(whichever is greater) above the radar antenna, and at holding pattern speeds, flaps and gear 
extended, fly one each standard rate 360 degree turn, right and left, at a distance of 
approximately 10 NM from the air route surveillance radar (ARSR) or airport surveillance radar 
(ASR) facility.  There should be no signal dropout (two or more sweeps). 
 
    2 At an altitude of 2,000 feet or minimum obstruction clearance altitude 
(whichever is greater) above the radar antenna and at holding pattern speeds appropriate for the 
type of airplane, fly a 45 degree segment of a 10 NM orbit centered on the radar facility with 
gear and flaps extended.  There should be no signal dropout (two or more sweeps). 
 
   (h)  Surveillance Approach.  From an altitude of 35,000 feet or within 90 percent of 
the maximum certificated altitude of the airplane or the maximum operating altitude, whichever 
is less, perform a letdown and approach to a runway of an airport served by ASR having an air 
traffic control radar beacon system (ATCRBS) facility.  Alternately, a simulated approach and 
letdown may be made along a path parallel to, but separated three to four miles from, a vertical 
plane through the location of an ARSR facility.  The approach should be made at the maximum 
normal rate of descent and in the normal approach and landing configuration for the airplane, 
and should continue down to an altitude of 200 feet or less above the ground radar antenna 
elevation.  Not more than one dropout should occur for any 10 sweeps during final approach; if 
ring-around occurs, the flightcrew should reduce the sensitivity and the ring-around should 
cease. 
 
   (i) Altitude Reporting.  Conduct a functional test of the altitude encoder 
(transponder Mode C) by comparison with ATC-displayed altitudes.  Verify correspondence at 
several altitudes between ATC readings and the captain’s altimeter, when set at or corrected to 
29.92 inches of mercury. 
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NOTE: Throughout all tests, verify self-test function and radar interrogation 
reply light. 

 
   (j) EMC should be evaluated with all systems operating in flight to verify by 
observation that no adverse effects are present in the required flight systems. 
 
  (8) Weather Radar System. 
 
   (a) Warm-up Period (if applicable.)  All tests should be conducted after the 
manufacturer’s specified warm-up period. 
 
   (b) Display.  Check that the scope trace and sweep display move smoothly and are 
without gaps or objectionable variations in intensity.  For color displays, verify appropriate 
colors and color contrast. 
 
   (c) Range Capabilities.  While maintaining level flight at 90 percent of maximum 
approved altitude of the airplane, set the radar controls so that large radar-identifiable objects 
such as mountains, lakes, rivers, coastlines, storm fronts, turbulence, etc., are displayed on the 
radar scope.  Objects should be displayed at the maximum range specified by the manufacturer.  
Maneuver the airplane and adjust the radar controls so that tests may be conducted for the range 
requirements.  The radar should be capable of displaying line-of-sight known prominent targets. 
 
   (d) Beam Tilting and Structural Clearance. 
 
    1 With the airplane maintained in level flight, adjust the radar controls so 
that large radar-identifiable targets appear on the radar scope when the antenna tilt control is 
adjusted for zero degrees.  Maneuver the airplane so that an appropriate target appears at the 
dead ahead (0 degrees) bearing position.  Slowly change the tilt control through an appropriate 
range and observe that the radar scope presentation does not change erratically, which might 
indicate structural interference between the radome and antenna.  This interference should not 
occur throughout the operational speed envelope of the airplane. 
 
    2 Bearing Accuracy.  Fly under conditions that allow visual identification 
of a target, such as an island, a river, or a lake, at a range within the range of the radar.  When 
flying toward the target, select a course from the reference point to the target and determine the 
error in the displayed bearing to the target on all range settings.  Change the heading of the 
airplane in increments of 10 degrees to ±30 degrees maximum and verify the error does not 
exceed ±5 degrees maximum in the displayed bearing to the target. 
 
   (e) Stability.  While observing a target return on the radar indicator, turn off the 
stabilizing function and put the airplane through pitch and roll movements.  Observe the blurring 
of the display.  Turn the stabilizing mechanism on and repeat the roll and pitch movements.  
Evaluate the effectiveness of the stabilizing function in maintaining a sharp display. 
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   (f) Contour Display (Iso Echo). 
 
    1 If heavy cloud formations or rainstorms are reported within a reasonable 
distance from the test base, select the contour display mode.  The radar should differentiate 
between heavy and light precipitation. 
 
    2 In the absence of the above weather conditions, determine the 
effectiveness of the contour display function by switching from normal to contour display while 
observing large objects of varying brightness on the indicator.  The brightest object should 
become the darkest when switching from normal to contour mode. 
 
   (g) Antenna Stability When Installed.  While in level flight at 10,000 feet or 
higher, adjust the tilt approximately 2-3 degrees above the point where ground return was 
eliminated.  Put the airplane through down pitch, then roll movements.  No ground return should 
be present. 
 

NOTE: Roll right and left approximately 15 degrees; pitch nose down 
approximately 10 degrees. 

 
   (h)  Ground Mapping.  Fly over areas containing large, easily identifiable 
landmarks such as rivers, towns, islands, coastlines, etc.  Compare the form of these objects on 
the indicator with their actual shape as visually observed from the cockpit. 
 
   (i) Mutual Interference.  Determine that no objectionable interference is present 
on the radar indicator from any electrical or radio/navigational equipment, when operating, and 
that the radar installation does not interfere with the operation of any other equipment.  
Particular attention should be devoted to radar effect on electronic display systems and on 
localizer, glideslope, and ADF signals during approach to landing. 
 
   (j) EMC should be evaluated with all systems operating in flight to verify by 
observation that no adverse effects are present in the required flight systems. 
 
  (9) Inertial Navigation System (INS). 
 
   (a) AC 20-138B, “Airworthiness Approval of Positioning and Navigation 
Systems,” dated September 27, 2010, contains the basic criteria for the engineering evaluation of 
an inertial navigation system and offers acceptable means of compliance with the applicable 
regulations that contain mandatory requirements in an objective form.  The engineering 
evaluation of an INS should also include awareness of AC 121-13, Change 2, “Self-Contained 
Navigation Systems (Long Range),” dated December 21, 1970, which presents criteria to be met 
before an  operator can obtain operational approval.  For flights up to 10 hours, the radial error 
should not exceed 2 nautical miles per hour of operation on a 95 percent statistical basis.  For 
flights longer than 10 hours, the error should not exceed ±20 NM cross-track or ±25 NM along-
track error.  A two nautical mile radial error is represented by a circle, having a radius of two 
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nautical miles, centered on the selected destination point.  For airplanes intended for air carrier 
operation, reference should be made to appendix G to part 121 of the CFR. 
 
   (b) The INS equipment supplier, through the applicant, will generally provide 
system reliability data sufficient so that additional testing for equipment reliability demonstration 
will not be required.  Assuming adequate cooling is available for the installation, the data can be 
considered independent of which type of airplane was used for derivation. 
 
   (c) Temperature.  Some systems have temperature monitors built into the sensor 
block.  When the device temperature reaches a given level, the system automatically shuts down.  
This condition could represent a common mode failure wherein insufficient cooling is provided 
to the multiple sensors with the consequent result that they all trip the temperature monitor 
simultaneously.  Some equipment may be constructed with the cooling mechanization integral to 
the individual unit.  Regardless of how the equipment cooling is accomplished, if the proper 
operation of the unit is below acceptable levels due to failures of the cooling function, then the 
cooling function should be addressed by analysis and demonstration, where applicable. 
 
   (d)  INS On-Airplane Test Procedure. 
 
    1 With INS equipment off, verify all avionics equipment are operating 
normally. 
 
    2 Close INS primary, heater, and excitation circuit breakers and set the 
mode selector to start warm-up, as required by the manufacturer’s normal procedures. 
 
    3 Alignment. 
 
     (aa) Initiate INS alignment according to the manufacturer’s procedures 
and input flight plan waypoints and record.  (The airplane’s present position needs to be loaded 
before the system can complete alignment.  Do not move the airplane until the system is aligned 
and in the Navigate mode, (NAV) if so equipped.)  Present position accuracy should be known to 
within 0.1 NM. 
 
     (bb) Normal wind buffeting and movement of cargo and personnel will 
not affect alignment quality, but severe buffeting may lengthen the time required for alignment. 
 
     (cc) Continue operation in the NAV mode until a minimum of one hour 
has passed. 
 
    4 Pre-departure. 
 
     (aa) Recheck that other avionics operate normally and that all systems 
and instruments using INS information operate correctly. 
 
     (bb) Set up INS for a track from present position to any stored waypoint 
and check proper cockpit display unit (CDU) and instrument displays. 
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     (cc) When the conditions as described by the manufacturer are satisfied, 
set the mode selector to “Navigate.”  Verify that the NAV mode is achieved and no warning 
condition is indicated.  Record the time at which NAV mode is verified. 
 
    5 Departure Procedure. 
 
     (aa) Taxi.  While taxiing the airplane, monitor INS performance with the 
CDU data selector set to display track angle and ground speed. 
 
     (bb) Takeoff.  With the CDU set as required to observe ground speed, 
track angle, heading, and drift angle during takeoff and initial airborne conditions, verify normal 
and proper performance.  Reasonable assessment may be accomplished using other instruments 
and avionics. 
 
     (cc) Initial track.  Define a track from present position to first available 
waypoint and fly to intercept using instrument display or autopilot. 
 
    6 In Flight.  During flight conditions, perform and/or check the following:  
(NOTE: Do not change system mode selector from “Navigate” during navigational tests.  If a 
system is installed to provide attitude for the airplane system, the “ATT REF” mode should be 
checked after navigation mode tests are completed).  When selector is changed to “ATT REF,” 
ascertain that all appropriate equipment annunciators indicate the disconnect.) 
 
     (aa) Exercise all procedures, such as waypoint navigation, offset 
navigation, selected track navigation, etc., that are listed as system capabilities by the 
manufacturer and in the AFM. 
 
     (bb) If updating capabilities are provided, either as manual or automatic, 
use defined procedures to verify operation. 
 
     (cc) Operate the INS in both the manual and automatic modes for 
waypoint sequencing. 
 
     (dd) Verify satisfactory control of the airplane, proper flight director 
indication, and flight instrument presentation, as appropriate to the installation.  When the INS is 
operating, all airplane displays that would be affected or changed in meaning should be clearly 
annunciated to the pilot (e.g., compass heading (true versus magnetic) autopilot coupled modes, 
etc.). 
 
     (ee) Operate the CDU in all display settings and verify functions and 
operation. 
 
     (ff) Operate other avionics and airplane electrical systems to determine if 
any mutual interference results that would cause either the INS or other systems’ performance to 
be less than required. 
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     (gg) If basic accuracy has been previously established, a triangular course 
should be flown with a base leg length of at least one hour.  The required accuracy is defined in 
paragraph 170c(9)(a), above. 
 
    7 Post Flight. 
 
     (aa) Park the airplane at a position known to within 0.1 NM and 
determine the radial error rate using the total time in NAV mode and the measured radial error.  
Record end point position, time, and error rate calculations. 
 

NOTE: 1.  On some models, radial error may be obtained as follows:  Load the 
park position as waypoint N; then define track (LEG) O to N.  The value of 
distance read on the CDU is the radial error. 

 
NOTE: 2.  If the system has been updated, remove the update prior to error 
calculations. 

 
     (bb) Pull INS primary power circuit breaker and verify operation on 
battery for 5 minutes.  Reset breaker and verify that the system functions normally and the 
waypoint data is correct. 
 
     (cc) Turn system to off. 
 
   (e) Attitude (if provided to the basic instruments). 
 
    1 The system should be installed to provide pitch and roll data to ±1 degree 
relative to the airplane’s reference level. 
 
    2 During navigation tests, the vertical gyro data should be checked.  
Additionally after NAV tests are completed, the airplane should be flown and placed in a 25 
degree bank with the INS in NAV mode.  While in the turn, switch to ATT REF mode, and level 
the airplane.  The attitude data should indicate properly.  If the system requires level flight at the 
time ATT REF is selected, the AFM should contain that information as a limitation. 
 
    3 Power Bus Transients.  After the normally expected electrical bus 
transients due to engine failure, attitude should not be off or unstable for more than one second 
and should affect only displays on one side of the airplane.  If power-up initialization or self-
tests are started by the transient, any change in attitude should not be a distraction; recognizably 
valid pitch and roll data should be available within one second.  For most airplanes, an engine 
failure after takeoff will simultaneously create a roll rate acceleration, new pitch attitude 
requirements, and an electrical transient.  Attitude information is paramount; transfer to standby 
attitude or transfer of control of the airplane to the opposite pilot cannot be reliably 
accomplished under these conditions in a timely enough fashion to prevent an unsafe condition.  
In testing this failure mode, switching the generator off at the control panel will usually result in 
the quickest switching time.  Conversely, during an engine failure, as the engine speed decays, 
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the generator output voltage and frequency each decay to a point where the bus control relays 
finally recognize the failure.  This can be a significantly larger disturbance resulting in a 
different effect on the using equipment.  The only known way to simulate this failure is with a 
fuel cut.  Both means should be tested. 
 
   (f) Electromagnetic Compatibility.  The INS should not cause the performance of 
other systems aboard the airplane to be degraded below their normal function, and INS operation 
should not be adversely affected by other equipment. 
 
  (10)    Vertical Navigation  (VNAV) System.  A complete and comprehensive flight test 
evaluation is contained in AC 20-138B, “Airworthiness Approval of Positioning and Navigation 
Systems,” dated September 27, 2010. 
 
  (11)  Doppler Navigation System.  Doppler Navigation System installed performance 
should be evaluated in accordance with AC 121-13, Change 2, “Self Contained Navigation 
Systems (Long Range),” dated December 21 1970.  See also 14 CFR part 121, Appendix G, and 
paragraph 170c(9) of this AC, which addresses Inertial Navigation Systems. 
 
  (12)  Area Navigation (RNAV).  Information pertinent to flight evaluation of area 
navigation is contained in AC 90-45A, Change 2, “Approval of Area Navigation Systems for 
Use in the U.S. National Airspace System,” dated February 21, 1975.  AC 90-100A, “US 
Terminal and En Route Area Navigation (RNAV) Operations” dated March 1, 2007; and AC 90-
101A, Approval Guidance for Required Navigation Performance (RNP) Procedures with AR” 
dated February 23, 2011.  Note that the area navigation function is most often performed by the 
systems identified in paragraphs 170c(9), (10), (11), and (13) of this AC.  Flight test 
requirements should be reviewed accordingly. 
 
  (13)  Multi-Sensor Navigation System.  A complete and comprehensive flight test 
evaluation is contained in AC 20-138B, “Airworthiness Approval of Positioning and Navigation 
Systems,” dated September 27, 2010. 
 
  (14)  Performance Management System (PMS).  A complete and comprehensive flight 
test evaluation is contained in AC 25-15 “Approval of Flight Management Systems in Transport 
Category Airplanes,” dated November 20, 1989. 
 
  (15)  Flight Management System (FMS).  A complete and comprehensive flight test 
evaluation is contained in AC 25-15, “Approval of Flight Management Systems in Transport 
Category Airplanes,” dated November 20, 1989. 
 
  (16)  Global Navigation Satellite System (GNSS).  A complete and comprehensive 
flight test evaluation is contained in AC 20-138B, “Airworthiness Approval of Positioning and 
Navigation Systems,” dated September 27, 2010.    
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 d. Procedures-Instruments and Displays. 
 
  (1) Flight and Navigation Instruments. 
 
   (a) Flight demonstration of the following pilots’ instruments should address 
evaluation with regard to display, function, and lighting: 
 
    1 Attitude Director Indicator (ADI)-primary and standby 

    2 Horizontal Situation Indicator (HSI) 

    3 Radio Magnetic Indicator (RMI) 

    4 Airspeed and Mach No. Indicator-primary and standby (if installed) 

    5 Altimeter-primary and standby 

    6 Instantaneous Vertical Speed Indicator (IVSI) 

    7 Standby Compass 

    8 Clock 

    9 Total Air Temperature (TAT) Indicator  

    10 Radio Altimeter (R/A) 

 
   (b) The instruments should be evaluated for suitability of location and 
performance during flight operation.  Agreement between displayed functions, primary to 
standby, and captain’s to first officer’s display (where applicable) should be examined during 
takeoff, cruise, and landing, and during flight maneuvers of bank angles of ±60 degrees and pitch 
angles from + 25 to -10 degrees. 
 
   (c) In addition to the above instruments, the controls on the instrument, and those 
associated with changing the function of that instrument, should be evaluated. 
 
   (d) Day and night lighting of instruments should be demonstrated.  Evaluate for 
adequate illumination of the instruments and associated control panels and placards. 
 
  (2) Electronic Display Systems.  A complete and comprehensive description and flight 
evaluation is contained in AC 25-11A “Transport Category Airplane Electronic Display 
Systems,” dated June 21, 2007. 
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 e. Procedures-Sensors and Warning Systems. 
 
  (1) Compass System. 
 
   (a) Conduct a ground compass swing and record deviations from correct magnetic 
headings at 15 degree intervals.  Be particularly attentive for errors induced by intermittently 
operated electrical equipment that is not removable by compass compensation plates.  (See 
chapter 16, section 5, of AC 43.13-1B, Change 1, “Acceptable Methods, Techniques and 
Practices – Aircraft Inspection and Repair,” dated September 27, 2001, or latest revision.) 
 
   (b) Compare indicated heading information with known runway directions during 
takeoffs and landings. 
 
   (c) Conduct an inflight compass check by stabilizing the airplane on the four 
cardinal headings and recording the respective compass headings of both primary compass 
systems (in the slaved mode) and the standby compass system.  These readings should be 
compared with the flight recorder data as a check on compass repeater capability. 
 
   (d) Observe indicators for evidence of electronic or magnetic interference.  
Specifically, observe the standby compass operation as a function of windshield heat cycling and 
while keying radio transmissions. 
 
  (2) Attitude System-“Strapdown” (AHRS & IRS). 
 
   (a) In addition to flight evaluation of the pitch and roll attitude characteristics of 
conventional vertical gyros, which is rather straight-forward, the microprocessor-based 
strapdown attitude (and heading) systems present some additional considerations for certification 
and flight testing, as discussed in this paragraph.  Attitude and heading reference systems 
(AHRS) and inertial reference systems (IRS) are the types of systems envisioned. 
 
   (b) Validation of acceptable equipment installations includes, but is not limited to, 
the validation of proper installation considering the combined effects of temperature, altitude, 
electromagnetic interference, (EMI), vibration, and other various environmental influences.  
These installation requirements are applicable to critical, essential, and non-essential systems.  
However, there may be cases where non-essential installations do not warrant the expense of 
having all, or even part, of these tests and analyses conducted.  The necessity for conducting 
these on non-essential installations should, therefore, be determined on a case-by-case basis by 
the FAA project engineer, based on the specific and individual circumstances involved.  
Particular attention should be paid to the following environmental considerations: 
 
    1 Vibration.  Testing is generally accomplished on the sensor level to the 
criteria of RTCA DO-160G, “Environmental Conditions and Test Procedures for Airborne 
Equipment.”  The structural mounting provisions on the airplane should provide assurance that 
the DO-160G levels are not exceeded when the airplane encounters gusts, as defined in appendix 
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G to part 25.  The concern is that the dynamic range of the sensor may be exceeded during this 
vibration encounter. 
 
    2 Temperature.  Some systems have temperature monitors built into the 
sensor block.  When the device temperature reaches a given level, the system automatically shuts 
down.  This condition could represent a common mode failure wherein insufficient cooling is 
provided to the multiple sensors, with the consequent result that they all trip the temperature 
monitor simultaneously.  Some equipment may be constructed with the cooling mechanization 
integral to the individual unit.  Regardless of how the equipment cooling is accomplished, if the 
proper operation of the unit is below acceptable levels due to failures of the cooling function, 
then the cooling function should be addressed by analysis and demonstration, where applicable. 
 
    3 Power Bus Transients.  After the normally expected electrical bus 
transients due to engine failure, attitude should not be off or unstable for more than one second 
and should affect only displays on one side of the airplane.  If power-up initialization or self-
tests are started by the transient, any change in attitude should not be distracting; recognizably 
valid pitch and roll data should be available within one second.  For most airplanes, an engine 
failure after takeoff will simultaneously create a roll rate acceleration, new pitch attitude 
requirements, and an electrical transient.  Attitude information is paramount; transfer to standby 
attitude or transfer of control of the airplane to the opposite pilot cannot be reliably 
accomplished under these conditions in a timely enough fashion to prevent an unsafe condition.  
In testing this failure mode, switching the generator off at the control panel will usually result in 
the quickest switching time.  Conversely, during an engine failure, as the engine speed decays, 
the generator output voltage and frequency each decay to a point where the bus control relays 
finally recognize the failure.  This can be a significantly larger disturbance resulting in a 
different effect on the using equipment.  One way to simulate this failure is with a fuel cut, at a 
safe altitude and airspeed.  Both means should be tested. 
 
   (c) Multi-axis Failures - FMEAs generally do not rule out the combined pitch/roll 
attitude failures.  If this failure condition can propagate through the autopilot, a need may exist 
for demonstrating multi-axis autopilot hardovers, as described in paragraph 181 of this AC.  If 
the autopilot system architecture is such that the failure cannot get through to the control surface 
(i.e., input sensor screening, fail-passive autopilot, reasonableness tests, etc.), the need for 
hardover demonstration may be eliminated.  Be aware of the fact that most fail-passive cruise 
mode autopilots may not be truly fail-passive when reconfigured to reversionary modes. 
 
   (d) Attitude Sensor Intermix - If the applicant is seeking certification credit for 
sensor intermix (e.g., vertical and directional gyros (VG/DG)) on the captain’s side, and AHRS 
on the first officer’s side), compatibility of the two systems should be demonstrated (i.e., no 
excessive attitude monitor trips, no adverse influence on system availability (such as autoland) 
due to monitor trips, etc.).  This also holds true for either mode of AHRS operation 
(NORMAL/BASIC or STANDBY), if this feature is available in the system. 
 
   (e) For systems that have two operational modes (NORMAL and BASIC), 
annunciation of the fact that the system is operating in the reversionary (BASIC) mode is largely 
dependent on the user system’s architecture.  For example, if the airplane is equipped with a 
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CAT III autoland system or CAT III head up display (HUD) system, the performance in these 
modes with Basic Attitude may be degraded to the point where airplane safety is compromised in 
CAT III weather conditions.  There should then be clear and unmistakable annunciation of the 
fact that this attitude condition exists. 
 
   (f) For triple AHRS installations, switching is provided to substitute the third 
AHRS for either the captain’s or first officer’s system.  Annunciation of the fact that the 
switched condition is in existence may or may not be required, depending on cockpit layout, 
pilot workload considerations, etc.  This is an assessment generally made by the FAA project 
pilot.  The same holds true for annunciation of whether or not the third system is inoperative. 
 
   (g)  Some additional flight evaluation suggestions follow: 
 
    1 While on the ground, determine that the attitude system provides usable 
attitude information through 360 degrees of roll and pitch by rotating the platform through 360 
degrees of roll and pitch while observing the appropriate attitude indicator. 
 
    2 Verify the system performs as intended, providing satisfactory attitude 
and heading information to the pilot’s and copilot’s attitude and heading instruments throughout 
the normal airplane flight envelope, including unusual attitudes that may be expected in service. 
 
    3 Verify that the flight control system functions properly when interfaced 
with the attitude system.  This functional evaluation may be accomplished during a typical flight 
profile encompassing en route, maneuvering, and coupled approach operations. 
 
    4 Determine that loss of the air data system or airspeed input is properly 
annunciated and that the systems continue to provide satisfactory attitude/heading information. 
 
    5 Verify that the comparator monitor provides proper annunciation of 
attitude/heading disparity. 
 
    6 Verify that loss of a single power source does not cause loss of both 
attitude systems simultaneously. 
 
    7 Verify that attitude/heading data from each is not lost for more than 1 
second following loss of a primary power source (generator, alternator, inverter, etc.) 
simultaneous with loss of the associated powerplant. 
 
    8 Verify that the system can be realigned in flight after being shutdown for 
more than 3 minutes (if applicable). 
 
    9 Verify that each attitude system continues to operate correctly following a 
simulated airplane electrical power loss of X seconds (equipment specific), by removing power 
from each respective electrical bus. 
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    10 Verify proper operation of the back-up battery (if installed) and display of 
appropriate flags by pulling the attitude circuit breaker.  Note that the system operates correctly 
on back-up battery power for approximately X minutes (equipment specific) and then shuts 
down.  Determine that the appropriate flags appear on the effected displays. 
 
    11 Verify that all controls, displays, and annunciations are satisfactorily 
identified, accessible, operable, and adequate for direct sunlight and night conditions. 
 

NOTE: It is possible that some of the above items can be accomplished in a 
laboratory or simulator environment.  

 
   (h) Verify that there is no unacceptable mutual interference between the attitude 
system and other systems and equipment. 
 
  (3) Angle-of-attack (AOA) System. 
 
   (a) Pilot interface with this system will generally be a consequence of presenting a 
raw data readout in the cockpit and/or driving the Slow/Fast (S/F) display on the ADI, (if so 
equipped). 
 
   (b) Evaluate the displays during normal approaches and landings to assure 
reasonable/proper information is being presented for the particular flap setting and VREF speed 
over the gross weight and c.g. range of the airplane (S/F should be centered). 
 
   (c) Conduct left and right sideslips that would be representative of normal 
operation on approach during crosswind landings or engine-out conditions. 
 
   (d) Determine that the malfunction indicators (flags) are appropriately displayed 
and are satisfactory annunciators. 
 
   (e) Qualitatively assess that the thresholds of displays are wide enough to permit 
the pilot to follow the indicators, as appropriate to the operation of the airplane. 
 
   (f) Determine that instrument presentation is sufficiently damped to permit use in 
turbulent air and that hysteresis, if present, is acceptable. 
 
   (g) Verify that the AOA system neither contributes to, nor is affected by, radio 
frequency or electromagnetic interference (RFI/EMI). 
 
  (4) Air Data System. 
 
   (a) The air data system performance, with the exception of airspeed calibration, 
will generally be demonstrated qualitatively by observation of the output displays. 
 
   (b) Be particularly observant of barometric altimeter and vertical speed reversals 
as a function of rapid pitch attitude changes (e.g., takeoff rotation). 
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   (c) Verify that the Mach/airspeed indicators operate smoothly throughout the 
complete speed envelope of the airplane. 
 
   (d) Observe correct operation of the overspeed warning indicator (barber pole) 
while approaching VMO/MMO speeds. 
 
   (e) Observe the static and total air temperature (SAT/TAT) indicators for 
reasonableness of data presentation. 
 
   (f) Verify that the air data system neither contributes to, nor is affected by 
RFI/EMI.  
 
  (5) Radio Altimeter System. 
 
   (a) The radio altimeter system should display to the flightcrew, clearly and 
positively, the altitude information that indicates the airplane main landing gear wheel height 
above terrain. 
 
   (b) Under the measurement conditions described, verify that the altimeters: 
 
    1 Display altitude without loss of signal indications or excessive 
fluctuations, under the following conditions: 
 
     (aa) Pitch angle ±5 degrees about the mean approach attitude. 
 
     (bb) Roll angle zero to ±20 degrees. 
 
     (cc) Forward velocity from minimum approach speed up to 200 knots, in 
appropriate configurations. 
 
     (dd) At altitudes from 0 to 200 feet with sink rates of 0 to 15 feet/second, 
in landing, approach, and go-around configurations. 
 
    2 Track the actual altitude of the airplane over level ground without 
significant lag or oscillation. 
 
   (c) With the airplane at an altitude of 200 feet or less, verify that any abrupt 
change in terrain, representing no more than 10 percent of the airplane’s altitude, does not cause 
the altimeter to unlock.  The indicator response to such changes should be appropriate.  If the 
system unlocks, it should re-acquire the signal promptly without pilot intervention. 
 
   (d)  Caution should be exercised on airplanes equipped with automatic landing 
systems if the radio altimeter system is prone to unlock while flying final approach over irregular 
terrain, since in all probability, the unlock will adversely affect the autoland availability 
requirement. 
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   (e) If a decision height (DH) function is provided, verify proper operation at 
minimum altitudes of 200 feet, 100 feet, and 50 feet. 
 
   (f) Verify that the push-to-test self-test feature generates a simulated radio 
altitude of less than 500 feet, and that no other systems experience untended effects or 
interference.  For aircraft with automatic landing systems, the self-test feature should be shown 
to be inhibited during the low altitude phases of the autoland. 
 
   (g) Verify that the system provides a positive failure warning display any time 
there is a loss of power or a failure of the altimeter to function properly. 
 
   (h)  Verify that the radio altimeter system neither contributes to, nor is affected by 
RFI/EMI. 
 
  (6) Onboard Weight and Balance System.  AC 20-161, Aircraft Onboard Weight and 
Balance Systems,” provides guidance for certification of onboard weight and balance systems 
dated April 11, 2008. 
 
  
  (7) Central Aural Warning System (CAWS). 
 
   (a) Most CAWS functions include aural (and voice, in some installations) 
warnings of the following typical airplane conditions: 
 

Table 170-4  Types of Aural Warnings 
 
    Engine Fire  Altitude Advisory 
    APU Fire  Speedbrake 
    Overspeed  Autopilot Disconnect 
    Takeoff   Flap/Slat Overspeed 
    Stall    Cabin Altitude 
    Landing Gear  Stabilizer-In-Motion 
    Evacuation  Autothrottle Disconnect 
 
Pilot Call and SELCAL tones may also be included, although they are advisories as opposed to 
warnings. 
 
   (b) The logic for this system usually resides in another computer (e.g., the flight 
warning computer or master caution/master warning computer) in which case the two systems 
should be evaluated simultaneously.  However, if the logic and/or computer governing activation 
of the warnings, priority logic, inhibits, etc. are contained in the CAWS itself, refer to the section 
covering the computers noted above for additional guidance on flight evaluation.  Compliance 
may be shown by equivalent tests in a flight simulator or by bench tests. 
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   (c) Individual activation of each warning tone should be accomplished in flight 
under the most adverse noise conditions appropriate to the warning (e.g., VMO/MMO for 
overspeed, high speed descent for APU fire, acceleration following takeoff for flap/slat 
overspeed, etc.).  Test switches and/or the self-test feature of the system would be an appropriate 
means to activate the warning. 
 
   (d) The flight evaluation will be a pilot qualitative assessment of the clarity, tone, 
and volume of each warning. 
 
  (8) Overspeed Warning System.  This system should be demonstrated in conjunction 
with the airspeed system calibration and should exhibit that it is consistently within the 
prescribed tolerances.  The system tolerance is from VMO to VMO + 6 knots in the airspeed 
limited range, and from MMO to MMO + 0.01M in the Mach limited range. 
 
  (9)  Altitude Advisory (or Altitude Alerting) System. 
 
   (a) A ground test should be conducted to check the adequacy of the required pre-
flight procedure provided in the AFM. 
 
   (b) A flight demonstration should be conducted at low, mid, and high altitudes to 
verify performance of the intended function of: 
 
    1 Alerting to an impending capture of a pre-selected altitude; and 
 
    2 Alerting to an uncommanded departure from an assigned (selected) 
altitude. 
 
   (c) Low and high rates of vertical speed should be included in the evaluation with 
captures from above and below the pre-selected altitude. 
 
   (d) Determine adequacy of the alert light location and its visibility under various 
lighting conditions, and adequacy of the aural warning. 
 
   (e)  A flight simulator may be used to perform appropriate tests. 
 
  (10)  Terrain Awareness and Warning System (TAWS).  AC 25-23, “Airworthiness 
Criteria for Installation Approval of a Terrain Awareness and Warning System for part 25 
Airplanes,” contains guidance for flight test considerations for TAWS approvals, dated May 22, 
2000.  
 
  (11)  Master Caution System (MCS)/Master Warning System (MWS). 
 
   (a) This system provides inputs to master warning and master caution lights 
located on the glareshield in front of each pilot and to the CAWS.  (See paragraph 170e(8)).  It 
contains the sensors, switches and logic required to assess the requirement for the warning and 
caution annunciations. 
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   (b) The system may contain logic to assess priority of the various warnings in 
order to sequence simultaneous actuation.  If so, ground, flight, or bench tests may have to be 
conducted to verify this logic. 
 
   (c) Some cautions may be inhibited during various phases of flight, particularly 
during the final stages of a Category III automatic landing operation (below alert height).  If so, 
ground or flight tests may have to be structured to verify the inhibit logic.  Also, certain 
warnings may be inhibited during the high speed stages of a takeoff roll.  If this feature is 
incorporated, it too should be carefully substantiated.  
 
   (d) Simulate failure of selected sensor inputs to verify that the MCS/MWS 
computer detects the faults and illuminates the fail annunciator (if installed). 
 
   (e) Verify that there is no unacceptable mutual interference between the 
MCS/MWS and other systems and equipment. 
 
  (12)  Flight Warning Computer (FWC). 
 
   (a) The FWC is a key subset of the overall warning, caution, and alerting system 
on the more modern airplanes.  It is a microprocessor-based system that works in conjunction 
with, or totally replaces, the CAWS and MCS/MWS. 
 
   (b) The FWC incorporates sufficient computer capacity to perform many more 
functions than the MCS/MWS and, in addition to outputting to the visual warning displays and 
aural warning speakers, outputs hundreds of alerts/messages to other display media, most often 
an electronic display (multi-function CRT on the instrument panel or the CDU portion of the 
FMS). 
 
   (c) The added computer capacity also enables incorporating rather complex 
inhibit algorithms which, in turn, dictates a requirement for structuring a very complex ground 
test to verify operation of the inhibits.  Review of the system description document will probably 
be required before any ground, flight, or bench tests can be defined. 
 
   (d) The flight evaluation should incorporate the tests described under CAWS and 
MCS/MWS. 
 
   (e) Verify that the self-test feature functions properly. 
 
   (f) Simulate failure of selected sensor inputs to verify that the FWC detects the 
faults and illuminates the FWC fail annunciator. 
 
   (g)  Demonstrate freedom from nuisance warnings by observing and logging 
nuisance events as they occur throughout the flight demonstration program.  Assess the status at 
the end of the program by examining the log. 
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  (13)  Stall Warning Computer (SWC). 
 
   (a) The SWC should be evaluated in conjunction with the stall tests described in 
Chapter 2, Section 6 of this AC.  Adequacy of the various warnings (stick shaker, warning light, 
aural (and voice) warning) should be assessed, in addition to the speed schedules. 
 
   (b) Demonstrate freedom from nuisance warnings during the takeoff, landing, and 
maneuvering flight tests described in Chapter 2 of this AC.  Further testing may be required to 
show freedom from nuisance warnings by the test requirements in Chapter 8 of this AC if special 
airworthiness approvals are sought. 
 
  (14)  Takeoff Warning (TOW) System. 
 
   (a) The TOW system is usually a subset of the CAWS or MCS/MWS or FWC and 
is generally inhibited at nose wheel liftoff during the takeoff maneuver.  It is usually armed when 
the squat switch indicates that the airplane is on the ground and one or more power or thrust 
levers are advanced beyond a prescribed position or engine power or thrust setting.  The system 
alarms if the flaps/slats/stabilizer/spoiler/brakes are not set correctly for takeoff. 
 
   (b) Determine that each event is annunciated properly by conducting a static 
ground test. 
 
   (c) Flight evaluation during takeoff roll should be a qualitative assessment of the 
clarity, tone, and volume of each warning.  Some systems incorporate a TEST switch, which 
facilitates activation during takeoff.  If this feature is not available, it may suffice to check the 
audio level of a warning during touch and go landings (e.g., the stabilizer warning while 
accelerating to VR speed). 
 
   (d) Simulate failure of selected sensor inputs to verify that the TOW system 
detects the faults and illuminates the fail annunciator (if installed). 
 
   (e) Verify that the system’s arming status is not affected by electrical power 
transients, which occur when switching from ground or APU power, during engine start, 
following bus priority checks, etc. 
 
   (f) Verify that there is no unacceptable mutual interference between the TOW 
system and other airplane systems and equipment. 
 
  (15)  Instrument Comparator System. 
 
   (a)  If an instrument comparator system is installed and activated, ensure the 
system monitors validity of and compares (side 1 vs. side 2) pitch and roll attitude, heading, 
altitude, airspeed, radio altitude, localizer, and glideslope deviation information used for display 
in the cockpit instruments. 
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   (b) When these parameters exceed a preset threshold or trip level, or if an invalid 
condition is detected in any of the displayed information, an appropriate annunciator to that 
parameter will be illuminated. 
 
   (c) A ground test on the airplane should be conducted to demonstrate performance 
of intended functions and validate the detector threshold levels.  If annunciation is suppressed 
under certain conditions, these conditions should also be checked. 
 
   (d) A flight evaluation should also be conducted to determine adequacy of the 
annunciator light locations and visibility under various lighting conditions and that the 
annunciators are properly identified. 
 
   (e) During flight, verify that the system is free from nuisance warnings and is 
compatible with other electronic systems. 
 
  (16)  Reactive Windshear Warning System.  A complete and comprehensive 
demonstration program (simulator and flight test) is contained in AC 25-12, “Airworthiness 
Criteria for the Approval of Airborne Windshear Warning Systems In Transport Category 
Airplanes,” dated November 2, 1987. 
 
  (17)  Traffic Alert and Collision Avoidance System.  A complete and comprehensive 
demonstration program (laboratory/ground/flight test) is contained in AC 20-131A, 
“Airworthiness Approval of Traffic Alert and Collision Avoidance Systems (TCAS II) and 
Mode S Transponders,” dated March 29, 1993.   
 
 f. Procedures-Recording Systems. 
  
  (1) Cockpit Voice Recorder (CVR). 
 
   (a) Demonstrate operation of the CVR self-test function and bulk erase feature. 
 
   (b) During ground operations prior to and after engine start; during takeoff, 
climbout, cruise at VMO / MMO, and during landing approach.  Except where specifically noted, 
obtain the following CVR recordings: 
 
    1 Flightcrew conversations using the area microphone. 
 
    2 Flightcrew conversations using the oxygen mask microphones and the 
boom-microphone/handset, and the hand-held microphones in flight and during ground 
operations. 
 
    3 Radio transmissions by each crew member during cruise. 
 
    4 Audio signals identifying navigation aids (through cockpit speakers and 
on radio channels) during landing approach. 
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    5 PA announcement during cruise. 
 
    6  Selective (based on analysis) aural warning signals (see CAWS) during 
appropriate flight phases. 
 
   (c) Use CVR circuit breaker to limit CVR recording to available capacity. 
  
   (d) Verify that all controls, displays, and annunciators consistent with normal and 
abnormal crew procedures, are satisfactorily identified, accessible, operable, and visible. 
 
   (e) EMC.  Verify by observation that no adverse effects are present in the required 
flight systems. 
 
   (f) Following the flight, test the CVR audio recording in an appropriate 
laboratory, and evaluate for clarity of the recorded messages.  Preferably the evaluators should 
not have advance information concerning the flightcrew conversations. 
 
   (g)  Verify that the hot mike feature at each position allows for recording regardless 
of the position of the interphone transmit key switch (§ 25.1457(c)(5)). 
 
  (2) Digital Flight Data Recorder (DFDR). 
 
   (a) Demonstrate operation of the DFDR self-test feature and, prior to collection of 
test data, set the trip number and date on the code switches of the Trip and Data Encoder, if so 
equipped.  
 
   (b) The certification data will be derived automatically during any appropriate 
flight that encompasses operation throughout the full flight envelope.  Hand recorded data of 
heading (magnetic or true), barometric altitude, pitch attitude, indicated airspeed, and time 
(UTC) should be collected at several stabilized flight conditions for subsequent data correlation 
purposes. 
 
   (c) Following the flight, the data should be retrieved for correlation and accuracy 
verification. 
 
   (d) Demonstrate performance of intended function of the DFDR for all parameters 
specified in the operating rules.  (Refer to appendix B of part 121 for the relevant data ranges, 
accuracies, and recording intervals.)  Accuracy will be verified at stabilized points by correlating 
against, and comparing with, an approved instrumentation system or manual notes. 
 
   (e) Electromagnetic Compatibility (EMC).  Verify by observation that no adverse 
effects are present in the required flight systems. 
 
 g. Engine Interfacing Systems.  [Reserved] 
 
 h. Stability Augmentation Systems.  [Reserved] 
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 i. All Weather Operation (Reduced Visibility) Systems.  [Reserved] 
 
171. Flight and Navigation Instruments - § 25.1303. 
 
 a. Explanation. 
 
  (1) Section 25.1303(b)(1) requires an airspeed indicator to be visible at each pilot 
station.  Additionally, if airspeed limitations vary with altitude, airspeed indicators must have a 
maximum allowable airspeed indicator showing the variation of VMO with altitude.  Presenting 
this variation in VMO as a marker on the airspeed indicator whose position varies as a function of 
altitude is an acceptable means of compliance with this requirement. 
 
  (2) Production tolerances for speed warning devices at VMO/MMO are required to be 
taken into account in accordance with § 25.1303(c). 
 
  (3) Section 21.127(b)(2) requires each production flight test to include “An operational 
check of each part or system operated by the crew while in flight to establish that during flight, 
instrument readings are within normal range.”  Nowhere in these requirements is there any 
inference that the finite performance or quantitative limits, defined during type certification, 
need to be determined for each production airplane. 
 
  (4) Section 25.1303(c) requires that turbine-powered airplanes be equipped with a 
speed warning device that will provide aural warning whenever the speed exceeds VMO plus 6 
knots or MMO + 0.01 M.  The regulations specify that the upper limit of the production tolerances 
permitted for the warning device must be at a speed not greater than the prescribed warning 
speed. 
 
  (5) Accuracy requirements specified in §§ 25.1323 and 25.1325 that apply to the 
airspeed indicator and altimeter required by § 25.1303(b)(1) and (2), respectively, apply equally 
to all installed airspeed indicators and altimeters, including standby airspeed indicators and 
altimeters. 
 
 b. Procedures.  The applicant should substantiate, by appropriate ground and/or flight tests, 
with possible production instrument error corrections, that the system operates within the 
boundaries established by the regulation.  Understanding that other procedures may be 
acceptable, this could be accomplished in accordance with the following: 
 
  (1) If the maximum allowable airspeed varies as a function of altitude, and is indicated 
by means other than a maximum airspeed versus altitude presentation in the airspeed indicator, it 
should be substantiated that the chosen means of maximum allowable airspeed indication 
provides an accurate presentation of the relationship between VMO and altitude.  The indicated 
VMO should not exceed the actual VMO for any altitude by more than six knots.  This is 
particularly important for airplanes that have a step function in VMO at a specific altitude (e.g., 
10,000 feet) due to bird strike considerations below that altitude. 
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  (2) During production flights, the speed warning device must provide warning at a 
speed equal to or less than VMO + 6 knots or MMO + 0.01 M, minus the sum of the values 
stipulated in (a) and (b) below: 
 
   (a) The possible error of the airspeed indicator or Mach meter used as the 
reference. 
 
   (b) Three knots or 0.005 M, if the airspeed indicator or Mach meter used as the 
reference has a static or pitot pressure source different from the pressure sources of the warning 
devices. 
 
  (3) The speed warning device must be shown to comply with the requirements of 
§ 25.1303(c), as explained in paragraph (a) and (b) below: 
 
   (a) During ground test using calibrated reference instruments, the installed speed 
warning device must provide warning at a speed equal to or less than VMO + 6 knots or MMO + 
0.01M.  The procedure for this test should be processed in accordance with § 21.127(b)(5) or 
§ 21.143(a)(3). 
 
   (b) For each type design, a test should be conducted to show satisfactory 
correlation between the operation of the warning device during flight and the data obtained 
during the ground tests. 
 
172. Powerplant Instruments - § 25.1305.  [Reserved] 
 
173. Miscellaneous Equipment - § 25.1307.  [Reserved] 
 
174. Equipment, Systems, and Installations - § 25.1309. 
 
 a. Explanation.  The following procedures outline and paraphrase the appropriate 
provisions of § 25.1309.  Further definition and explanation, if required, may be found in part 25 
and in AC 25.1309-1A, “System Design and Analysis,” dated June 21, 1988. 
 
 b. Procedures. 
 
  (1) Evaluate functioning of required installed equipment to verify that performance is 
as intended under any foreseeable operating and environmental conditions. 
 
  (2) Evaluate failure conditions, as appropriate, to determine their impact on the 
capability of the airplane or the ability of the crew to operate it. 
 
  (3) Review, as appropriate, any design analyses, proposals, studies, or tests that 
correlate probabilities of failure condition occurrence with the effects of those failure conditions, 
to determine that they are properly categorized for the appropriate criticality level. 
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  (4) Verify that adequate warnings are provided of unsafe conditions, and that these 
warnings enable the flightcrew to take appropriate corrective action with a minimum of error. 
 
  (5) In accordance with § 25.1310, for probable operating combinations of required 
electrical installations, verify that the following power loads are provided for probable durations: 
 
   (a) Loads connected to the system with the system functioning normally; 
 
   (b) Essential loads after failure of any one prime mover, power, converter, or 
energy storage device; 
 
   (c) Essential loads after failure of one engine on a two-engine airplane;  
 
   (d) Essential loads after failure of two engines on airplanes with three or more 
engines; 
 
   (e) Essential loads for which an alternate source of power is required, after any 
failure or malfunction in any one power supply system, distribution system, or other utilization 
system. 
 
  (6) For probable operating combinations of required electrical installations that must 
be provided with an alternate source of power in accordance with § 25.1331(a), verify that power 
is provided for probable durations after failure of any one power system. 

 
 

Section 2.  Instruments:  Installation 
 
 
175. Arrangement and Visibility - § 25.1321.  [Reserved] 
 
176. Warning, Caution, and Advisory Lights - § 25.1322.  [Reserved] 
 
177. Airspeed Indicating System - § 25.1323. 
 
 a. Explanation. 
 
  (1) Methods.  Unless a calibrated reference system is provided, the airspeed system 
should be calibrated throughout as wide a range as necessary to cover the intended flight tests.  
The procedures of this section are for the purpose of showing compliance with § 25.1323(b) and 
are not intended to cover the speed range of the flight tests.  If an alternate airspeed indicating 
system is provided, it should be calibrated.  The airspeed indicating system should be calibrated 
in accordance with the following methods: 
 
   (a) The tests should be conducted in stabilized flight at airspeeds throughout the 
speed range for the airplane configurations to be tested.  The airplane’s airspeed system should 
be calibrated against a reference airspeed system. 
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   (b) A reference airspeed system should consist of either of the following: 
 
    1 An airspeed impact pressure and static pressure measurement device (or 
devices) that are free from error due to airplane angular changes relative to the direction of the 
free stream or due to slipstream variation resulting from changes in airplane configuration or 
power/thrust.  In addition, the device or devices should have a known calibration error when 
located in the free stream; or 
 
    2 Any other acceptable airspeed calibration method (e.g., the altimeter 
method of airspeed calibration). 
 
   (c) If an alternate system is provided, it may be calibrated against either the 
reference system or the airplane’s system. 
 
   (d) An acceptable means of compliance when demonstrating a perceptible speed 
change between 1.23 VSR to stall warning speed (§ 23.1223(d)) is for the rate of change of IAS 
with CAS to be not less than 0.75. 
 
   (e) An acceptable means of compliance when demonstrating a perceptible speed 
change between VMO to VMO + 2/3 (VDF - VMO) ( § 23.1323(e)) is for the rate of change of IAS 
with CAS to be not less than 0.50. 
 
   (f) Airspeed Lag.  With the advent of electronic instruments in the cockpit, the 
pneumatic signals from the pitot and static sources are processed and digitized in the Air Data 
Computer (ADC) and then filtered and transported to the cockpit display.  As a result of the data 
processing and filtering, the associated time lag, and, consequently, airspeed lag at the cockpit 
display, can be an important consideration in the airspeed indicating system calibration during 
ground acceleration.  As stated in § 25.1323(b), the calibration for an accelerated takeoff ground 
run must determine the system error, which is the relation between indicated and calibrated 
airspeeds.  The system error is the sum of the pneumatic lag in the pressure lines, airspeed lag 
due to time lags in processing the data, and static source, position error. 
 
    1 Airspeed lag should be measured during ground acceleration tests or 
determined by analysis.  Increments should be developed for a range of airplane gross weights 
considering airspeed lag at V1 and the associated increase in accelerate-stop and takeoff 
distances due to lag.  The error due to lag in the airspeed indicating system during ground 
acceleration should not be greater than 3.0 knots throughout the takeoff operating envelope of 
the airplane.  Furthermore, an increase in the takeoff distance or the accelerate-stop distance as a 
result of airspeed lag should not exceed 100 ft.  The 3 knots limitation is intended to establish the 
maximum acceptable systematic error.  Even though the lag may be within the 3 knots limit, an 
airspeed correction may be required to stay within the 100 ft. of increased distance. 
 
    2 Corrections may be applied directly in the ADC or they may be 
introduced via the ground airspeed calibration provided in the AFM.  If corrections are applied 
directly in the ADC, it is possible to display calibrated airspeed in the cockpit.  Furthermore, if 
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acceleration data are input, the airspeed error can be computed and accounted for in real time, 
assuming the time lag is known.  The alternative would be to use an airspeed lag increment 
derived from calibration tests that would represent a range of conditions within the takeoff 
envelope.  After correction, an increase in distance due to lag should be less than 100 ft 
throughout the takeoff envelope, whether applied in the ADC or AFM.  Consideration should be 
given to short field, lighter weight takeoffs (higher acceleration), as well as maximum weight 
and higher V1 speeds, in deriving the increment. 
 
  (2) Configuration.  Airspeed calibration tests should be conducted in the following 
configurations: 
 
   (a) Weight - between maximum takeoff and maximum landing. 
 
   (b) C. G. position - optional. 
 
   (c) Takeoff configuration(s) - ground roll. 
 
   (d) Wing flaps and landing gear - all combinations of positions used to show 
compliance with the takeoff, climb, and landing requirements of part 25. 
 
   (e) Power or Thrust - as required. 
 
 b. Procedures. 
 
  (1) Any one or any desired combination of the procedures in subparagraphs (2) or (3) 
of this paragraph may be used for calibrating the airspeed indicating system.  The airspeed 
should be measured or determined simultaneously from the airplane’s system and the reference 
system during stabilized runs for at least five speeds spaced throughout the speed range, the 
lowest not to exceed 1.23 VSR.  The highest speed should not exceed VMO/MMO.  The speed 
spread between the test speeds should be limited to 10 knots from 1.23 VSR to 1.5 VSR or VFE, 
and 20 knots from 1.5 VSR to VMO. 
 
  (2) Reference airspeed system:  Stabilized runs at the test speeds listed in this 
paragraph should be made.  The airspeed from the airplane’s airspeed system and the reference 
airspeed system should be read simultaneously.  The following data should be recorded: 
 
   (a) Time of day. 
 
   (b) Airplane’s indicated airspeed. 
 
   (c) Reference indicated airspeed. 
 
   (d) Pressure altitude. 
 
   (e) Ambient air temperature. 
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   (f) Wing flap position. 
 
   (g) Landing gear position. 
 
  (3) Other acceptable airspeed calibration methods.  Stabilized flight runs at the test 
speeds should be made, and the necessary data recorded, to establish the airplane’s airspeed 
system error and the configuration of the airplane.  Calibration methods may also include 
airspeed boom, static trailing cone, and radar range. 
 
  (4) The procedures presented in this paragraph pertain to the calibration of the airspeed 
indicating system during takeoff ground acceleration.  In particular, airplanes with electronic 
instruments in the cockpit must account for the airspeed lag at the cockpit display associated 
with data processing and filtering as required by § 25.1323(g).  The airspeed indicating system 
should not have a lag in excess of 3 knots at the V1 speed during any takeoff condition.  
Furthermore, if airspeed lag causes an increase of more than 100 ft. in takeoff or accelerate-stop 
distances, a lag correction should be applied to the airspeed indicating system.  Airspeed lag 
should be determined by one of the following methods: 
 
   (a) Conduct ground acceleration tests for a range of airplane gross weights to 
calibrate IAS at the cockpit display against the reference CAS.  Determine airspeed lag from the 
calibration data by comparing the cockpit displayed airspeed with the reference calibration speed 
for a given gross weight and V1 speed. 
 
   (b) Determine airspeed lag by analysis using a computer program suitable for 
AFM development.  Compute takeoffs for a range of gross weights to determine the acceleration 
at V1.  Calculate airspeed lag at V1 for a corresponding acceleration and a known time lag due to 
data processing and filtering.  The analysis should also consider other sources of airspeed lag as 
appropriate, such as the pneumatic lag in the pressure lines for the pitot and static sources. 
 
  (5) Having established the calibration data, one acceptable method of adjusting for 
airspeed lag is to apply corrections directly in the ADC data processing to result in a lag-
corrected airspeed at the cockpit display.  Another would be to include an airspeed lag correction 
in the takeoff ground speed calibration of IAS vs. CAS in the AFM.  A single airspeed lag 
increment can be developed as the correction for the range of gross weights and corresponding 
accelerations at V1.  This increment, when applied to the calibration, should result in no more 
than a 100 ft. increase in takeoff or accelerate-stop distances due to airspeed lag for any takeoff 
condition.  A more accurate correction would result from presenting airspeed lag as a function of 
airplane acceleration based on the calibration data.  If acceleration data are available in the ADC, 
a real time correction for lag during the takeoff can be applied in the data processing. 
 
178. Static Pressure Systems - § 25.1325(d) and (e). 
 
 a. Explanation. 
 
  (1) If the altimeter installation is of the pressure type, its operation will be affected by 
any error that exists in the measurement of the static air pressure.  Since the accuracy of the 
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altimeter is of utmost importance, the static air vent system should be calibrated.  If separate or 
alternate vent systems are employed for the altimeter and airspeed indicator, separate 
calibrations are required.  Where the altimeter, rate of climb indicator, and airspeed indicators 
are vented to the same static systems, the altimeter calibration may be made in conjunction with 
the airspeed calibrations.  
 
  (2) The theoretical relationship between airspeed error and altimeter error may be used 
to derive an altimeter calibration from the airspeed calibration, or vice versa, if both use the same 
static vent, provided any error in total pressure over the angle-of-attack range is taken into 
account. 
 
 b. Procedures.  None.  
 
179. Pitot Heat Indication Systems - § 25.1326.  [Reserved] 
 
180. Magnetic Direction Indicator - § 25.1327.  [Reserved] 
 
181. Flight Guidance System - § 25.1329. 
 
 a. Explanation. 
 
  (1) On most modern airplane installations, the autopilot and flight director are 
integrated into a single computer, use common control laws, and are identified as a flight 
guidance system (FGS).  The FGS is primarily intended to assist the flightcrew in the basic 
control and tactical guidance of the airplane.  The system may also provide workload relief to the 
pilots and provide a means to fly a flight path more accurately to support specific operational 
requirements, such as reduced vertical separation minimum (RVSM) or required navigation 
performance (RNP).  To perform these functions, the FGS typically includes an integrated 
autopilot, autothrust, and flight director.  The FGS’s functions also include flight deck alerting, 
status, mode annunciations (instrument displays), and associated information displayed to the 
flightcrew for situation awareness.  Also included are those functions necessary to provide 
guidance and control with an approach and landing system, such as an instrument landing system 
(ILS), microwave landing system (MLS), global navigation satellite system (GNSS), or a GNSS 
landing system (GLS).  Although a HUD system, if installed, is generally a separate system, 
evaluation of its modes of operation would be identical to a flight director system.  For these 
reasons, the systems flight test evaluation criteria provided here also apply to HUDs.  (NOTE: 
For applicants considering type certification of a HUD system, we recommend that the flight 
technical error be characterized during certification testing.  This data will be required if the 
applicant chooses to seek operational credit for advanced performance-based navigation 
applications. 
 
  (2) For the purposes of this AC, the FGS includes all the equipment necessary to 
accomplish the FGS function, including the sensors, computers, power supplies, servo-
motors/actuators, and associated wiring.  It also includes any indications and controllers 
necessary for the pilot to manage and supervise the system. 
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  (3) A flight test program should be established that confirms the performance of the 
FGS for the modes of operation and the operational capabilities supported by its design.  The 
operational implications of certain failures and failure conditions may require flight evaluation.  
Also, the pilot interface with FGS controls and displays in the cockpit will need to be assessed.  
Some aspects of the FGS design may be validated by laboratory test and/or simulator evaluation. 
 
  (4) The scope of the flight demonstration program will depend on the operational 
capability being provided, including any new and novel features.  Early coordination with the 
FAA is recommended to reduce certification risks associated with the flight demonstration 
program.  The intent of the flight demonstration program is to confirm that the operation of the 
FGS is consistent with its use for the intended flight operations of the airplane type and 
configuration.  The modes of the FGS should be demonstrated in representative airplane 
configurations and under a representative range of flight conditions. 
 
  (5) Additional guidance material related to FGS operation, testing, and approval is 
contained in the following FAA ACs: 
 
   (a) AC 25-15, “Approval of Flight Management Systems in Transport Category 
Airplanes,” dated November 20, 1989. 
 
   (b) AC 25.1329-1B Change 1,“Approval of Flight Guidance Systems,” dated 
October 16, 2012. 
 
   (c) AC 91-16, “Category II Operations - General Aviation Airplanes,” dated 
August 7, 1967. 
 
   (d) AC 120-28D, “Criteria for Approval of Category III Weather Minima for 
Takeoff, Landing, and Rollout,” dated July 13, 1999. 
 
   (e) AC 120-29A, “Criteria for Approval of Category I and Category II Weather 
Minima for Approach,” dated August 12, 2002. 
 
 b. Procedures. 
 
  (1) General. 
 
   (a) The evaluation of an FGS should primarily concentrate on the intended 
function(s) and safe operation of the system.  Flight test evaluations supplement analysis, 
laboratory testing, and simulator testing for showing compliance with the applicable part 25 
requirements. 
 
   (b) The requirement for demonstrating safe operation should include evaluation of 
FGS failure conditions that a system safety assessment identifies as needing to be validated by 
flight test. 
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   (c) The FGS should be installed and adjusted so that the system tolerances 
established during certification tests can be maintained in normal operation.  This may be 
addressed by conducting flight tests at the extremes of the tolerances.  Those tests conducted to 
determine that the FGS will adequately control the airplane should establish the lower limit, and 
those tests to determine that the FGS will not impose dangerous loads or deviations from the 
flight path should be conducted at the upper limit.  Appropriate airplane loading to produce the 
critical results should be used. 
 
   (d) The system should be demonstrated to perform its intended function in all 
configurations in which it may be used throughout all appropriate maneuvers and environmental 
conditions, including turbulence, unless an appropriate operating limitation is included in the 
AFM.  All maneuvers should be accomplished smoothly, accurately, and without sustained 
nuisance oscillation. 
 
   (e) In addition to performance of intended function of each mode examined, the 
FGS should cause no sustained nuisance oscillations, undue control activity, or sudden large 
attitude changes, especially when configuration or power/thrust changes are taking place. 
 
   (f)  When use of the FGS is permitted with any of its functions inoperative (e.g., 
autothrust, yaw damper, etc.), the system should be evaluated with these functions both operative 
and inoperative. 
 
  (2) FGS Protection Features. 
 
   (a) Section 25.1329(h) requires that when the flight guidance system is in use, a 
means must be provided to avoid excursions beyond an acceptable margin from the speed range 
of the normal flight envelope.  The FGS itself may contain protection features to aid the flight 
crew in assuring that the boundaries of the flight envelope or operational limits are not exceeded.  
The means to alert the flightcrew to a boundary or for the system to intervene may vary, but 
certain operational scenarios can be used to assess the performance of the system in providing 
the protection function.  The procedures in the following paragraphs can be used to evaluate the 
protection features as required by § 25.1329(h), regardless of whether they are included in the 
FGS itself, or invoked by other means. 
 
   (b) Low Speed Protection.  Low speed protection is intended to prevent loss of 
speed leading to an unsafe condition.  If the FGS remains in the existing mode, a suitable alert 
should be provided to annunciate the low speed condition.  In this case, note the pilot response to 
the alert and the recovery actions taken to maintain the desired vertical path and to accelerate 
back to the desired speed.  The following scenarios should be considered when evaluating the 
low speed protection means that must be present when the FGS is in use:   
 
    1 High Altitude Cruise Evaluation. 
 
     (aa) At high altitude at normal cruise speed, engage the FGS into an 
Altitude Hold mode and a heading or lateral navigation (LNAV) mode. 
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     (bb) Engage the autothrust into a speed mode. 
 
     (cc) Manually reduce one engine to idle power or thrust. 
 
     (dd) As the airspeed decreases, observe the FGS behavior in maintaining 
altitude and heading/course. 
 
     (ee) When the low speed protection feature becomes active, note the 
airspeed and the associated aural and visual alerts including possible mode change annunciations 
for acceptable operation. 
 
    2 Altitude Capture Evaluation at Low Altitude. 
 
     (aa) At a reasonably low altitude (e.g., approximately 3000 feet above 
MSL where terrain permits) and at 250 knots, engage the FGS into Altitude Hold and a heading 
or LNAV mode. 
 
     (bb) Engage the autothrust into a speed mode. 
 
     (cc) Set the altitude pre-selector to 5000 feet above the current altitude. 
 
     (dd) Make a flight level change to the selected altitude feet with a 250 
knots climb at maximum climb power or thrust. 
 
     (ee) When the FGS first enters the Altitude Capture mode, reduce 
thrust/power on one engine to idle. 
 
     (ff) As the airspeed decreases, observe the airplane trajectory and 
behavior. 
 
     (gg) When the low speed protection condition becomes active, note the 
airspeed and the associated aural and visual alerts including possible mode change annunciations 
for acceptable operation. 
 
    3  High Vertical Speed Evaluation. 
 
     (aa) Engage the FGS in the Vertical Speed mode with a very high rate of 
climb. 
 
     (bb) Set the thrust/power to a value that will cause the airplane to  
decelerate at approximately 1 knot per second. 
 
     (cc) As the airspeed decreases, observe the airplane trajectory and 
behavior. 
 
     (dd) When the low speed protection condition becomes active, note the 
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airspeed and the associated aural and visual alerts including possible mode change 
annunciations for acceptable operation. 
 
    4 Approach Evaluation. 
 
     (aa) Conduct an instrument approach with vertical path reference. 
 
     (bb) Couple the FGS to the localizer and glideslope (or LNAV/VNAV, 
etc.). 
 
     (cc) Cross the final approach fix/outer marker at a reasonably high speed 
at idle thrust/power until low speed protection activates. 
 
     (dd) As the airspeed decreases, observe the airplane trajectory and 
behavior. 
 
     (ee) When the low speed protection becomes active, note the airspeed and 
the associated aural and visual alerts including possible mode change annunciation for 
acceptable operation. 
 
     (ff) Note the pilot response to the alert and the recovery actions taken to 
recover to the desired vertical path and the re-capture to that path and the acceleration back to 
the desired approach speed. 
 
   (c) High Speed Protection.  High speed protection, which may either be included 
in the FGS or provided by other means, is intended to prevent a gain in airspeed leading to an 
unsafe condition.  If the FGS remains in the existing mode with reversion to high speed 
protection, a suitable alert should be provided to annunciate the high speed condition.  In this 
case, note the pilot response to the alert and the recovery actions taken to maintain the desired 
vertical path and to decelerate back to the desired speed.  The following scenarios should be 
considered when evaluating the means used to provide protection from high speed excursions 
while the FGS is in use, as required by § 25.1329(h): 
 
    1 High Altitude Level Flight Evaluation with Autothrust Function. 
 
     (aa) Select autothrust off, if an automatic wake-up function is provided; 
otherwise, select autothrust on. 
 
     (bb) Engage the FGS in Altitude Hold. 
 
     (cc) Select a power or thrust level that will result in an acceleration that 
would cause, without intervention (either automatic or manual), a speed/Mach beyond 
VMO/MMO. 
 
     (dd) As the airspeed increases, observe the behavior of the high-speed 
protection condition and any autothrust reactivation and thrust/power reduction, as applicable. 
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     (ee) Assess the performance of the FGS to control the airspeed to 
VMO/MMO, or other appropriate speed. 
 
    2 High Altitude Level Flight Evaluation Without Autothrust Function. 
 
     (aa) Set a power/thrust level that will result in acceleration that would 
cause, without intervention (either automatic or manual), a speed/Mach beyond VMO/MMO. 
 
     (bb)  As the airspeed increases, observe the basic airplane overspeed 
warning activate. 
 
     (cc) Observe activation and effectiveness of the high speed protection 
means and note any FGS indications and behavior. 
 
     (dd) Maintain the existing power or thrust level and observe the airplane 
depart the selected altitude. 
 
     (ee) After sufficient time has elapsed to verify and record FGS behavior, 
reduce the thrust/power as necessary to cause the airplane to begin a descent. 
 
     (ff) Observe the FGS behavior during the descent and subsequent 
altitude capture at the original selected altitude. 
 
    3 High Altitude Descending Flight Evaluation With Autothrust Function. 
 
     (aa) Select autothrust off (with automatic wake-up function) with power 
or thrust set to maintain airspeed 10 percent below VMO/MMO with the FGS engaged in Altitude 
Hold. 
 
     (bb) Select Vertical Speed mode with a vertical speed that will result in an 
acceleration that would cause, without intervention (either automatic or manual), a speed/Mach 
beyond VMO/MMO. 
 
     (cc) As the airspeed increases observe the autothrust function reactivate 
and reduce power or thrust towards idle. 
 
     (dd) Observe the activation and effectiveness of the high speed protection 
means and note any FGS indications and behavior. 
 
  (3) FGS Takeoff Mode. 
 
   (a) AC 25-15, “Approval of Flight Management Systems in Transport Category 
Airplanes,” contains some basic criteria and airspeed tolerance criteria that should be included in 
the flight evaluation of systems containing takeoff guidance.  Additional testing considerations, 
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which should be considered for inclusion in the flight test plan, are presented in paragraphs (b) 
through (s), below. 
 
   (b) There are no test conditions specifically identified for evaluating the roll axis 
control function.  The performance of this function should be evaluated during the normal course 
of flight testing.  The test conditions for the pitch axis control function identified below is for a 
system providing computed command guidance (flight director, Head Up Guidance System 
(HGS), and automatic pilot after liftoff) to achieve and maintain a reference speed to be flown 
during second segment climb-out. 
 
   (c) For a normal all-engines-operating (AEO) takeoff, the reference speed should 
be the normal AEO initial takeoff climb speed selected by the applicant (typically V2+10 knots).  
In the event that an engine failure occurs during the takeoff maneuver, at an airspeed greater than 
VEF, the reference speed should be: 
 
    1 V2 if an engine failure occurs prior to V2. 
 
    2 The existing speed if engine failure occurs between V2 and the AEO 
initial climb speed. 
 
    3 The AEO initial takeoff climb speed for all other conditions, if 
appropriate. 
 
   (d) Evaluate takeoff performance with different flap settings and different loading 
conditions (gross weight and c.g.) to cover the various flight conditions.  Use normal rotation 
and cleanup procedures unless noted otherwise. 
 
   (e) Evaluate abnormal/simulated failure conditions including: 
 
    1 Late rotation.  
 
    2 Early rotation.  
 
    3 Simulated engine failure at VEF. 
 
    4 Simulated engine failure at V2+20 knots. 
 
    5 Simulated engine failure at V2+5 knots. 
 
   (f) Evaluate the ability of the FGS to command the correct speed for the 
conditions in the testing described in paragraphs (c), (d), and (e) above. 
 
   (g)  If a variable takeoff power or thrust derate or reduced thrust (power) feature is 
provided, perform takeoff demonstrations to cover the range of derated/reduced power or thrust 
levels for which approval is requested. 
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   (h)  If an ATTCS is included on the airplane, evaluate its performance of intended 
function in conjunction with the above. 
 
   (i) Conduct takeoffs with and without, as applicable, autothrust, yaw damper, 
autobrakes, control wheel steering, and any other automated equipment configurations, and 
combinations thereof, for which the applicant is seeking certification approval.  Include all 
sensor and instrument switching combinations. 
 
   (j) Evaluate Slow/Fast display behavior, if applicable, in conjunction with these 
takeoff tests. 
 
   (k) Evaluate the FGS behavior with both series and parallel rudder (if available) 
configurations, particularly in conjunction with simulated engine failure tests. 
 
   (l) Evaluate “fade-out” of parallel rudder (with simulated engine failure) during 
FGS takeoff mode transition to automatic altitude captures (if this feature is available). 
 
   (m) Evaluate pitch axis takeoff behavior during simultaneous heading select turns 
during climb-out. 
 
   (n) Evaluate mode transition from takeoff to other approved modes using flight 
director, HGS, and automatic pilot guidance (e.g., from pitch axis takeoff mode to Indicated 
Airspeed (IAS) Hold, Vertical Speed, Altitude Hold , or Vertical Navigation (VNAV) mode; 
from roll axis takeoff mode to Heading Select, radial tracking, or Lateral Navigation (LNAV) 
mode, etc.). 
 
   (o) Evaluate all reversion modes appropriate to the design.  Most speed command 
takeoff modes will be fail-passive (or fail-soft) and will probably contain reversion modes.  
Consult the system description, failure modes and effects analysis (FMEA), and the responsible 
systems engineer for definition of the appropriate evaluation.  This may be accomplished in an 
appropriate simulator environment. 
 
   (p) Evaluate adequacy of mode annunciations and controls and displays associated 
with takeoff mode operation. 
 
   (q) In addition to evaluating speed performance to the criteria shown in Table 2 of 
AC 25-15, “Approval of Flight Management Systems in Transport Category Airplanes,” evaluate 
command bar flyability, dynamics of the airplane while following the commanded guidance, 
initial pitch target presented during and immediately following rotation, etc. 
 
   (r) Evaluate takeoff pitch attitude limit, if applicable, for compatibility and 
command harmony. 
 
   (s) Quantitative time history data should be recorded with an onboard data system 
to facilitate post-flight evaluation of performance and to provide type inspection report (TIR) 
records. 
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  (4) FGS Climb, Cruise, Descent, and Holding Modes. 
 
   (a) The acceptability of the FGS performance may be based on subjective 
judgment, taking into account the experience acquired from similar equipment and the general 
behavior of the airplane.  The acceptable performance may vary according to airplane type and 
model. 
 
   (b) Examination of the following modes are considered appropriate for inclusion 
in this section: 
 

1. Altitude Hold/Select   
2. Area Navigation 
3. Backcourse 
4. Heading Hold/Select 
5. IAS Hold/Select    
6. Lateral Navigation 
7. Level Change    
8. Localizer (only) 
9. Mach Hold/Select   
10. Non-Precision Approach 
11. Pitch Attitude Hold   
12. Roll Attitude Hold 
13. Turbulence     
14. Vertical Navigation   
15. Vertical Speed Hold/Select  
16. VOR 
17. VOR Navigation 

 
Evaluation/approval of these modes generally will not require derivation of quantitative flight 
data. 
 
   (c) Special characteristics associated with some specific modes worthy of note 
are: 
 
    1 Operation of the system should not result in performance for which the 
pilot would be cited during a check ride (i.e., exceeding a speed target of 250 knots by more than 
5 knots, if appropriate, during operations below 10,000 feet altitude, or overshooting a target 
altitude by more than 100 feet during capture of the pre-selected altitude). 
 
    2 Where the FGS has the ability to acquire and maintain a pre-selected 
altitude, it should be shown in particular that: 
 
     (aa) With the autopilot function of the FGS engaged without autothrust, if 
the pilot fails to advance the throttles following an altitude acquisition from a descent, ensure 
that the FGS speed protection function activates to avoid an unsafe speed excursion. 
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     (bb) Resetting the datum pressure or the selected altitude at any time 
during altitude capture should not result in hazardous maneuvers. 
 
    3 The altitude hold mode should be evaluated: 
 
     (aa) During turning flight. 
 
     (bb) During accelerating and decelerating flight. 
 
     (cc) With engagement of the mode from climbing and descending flight 
conditions.  
 
    4 Thoroughly explore transition of VOR navigation from cruise/holding to 
the approach mode.  Include appropriate procedures or limitations in the AFM if special 
procedures or limitations are deemed to be necessary. 
 
  (5) FGS Go-Around Mode. 
 
   (a) AC 25-15, “Approval of Flight Management Systems in Transport Category 
Airplanes” dated November 20, 1989, contains some basic criteria and airspeed tolerance criteria 
for go-around systems that should be included in the flight evaluation.  Also, AC 120-28D, 
“Criteria for Approval of Category III Weather Minima for Takeoff, Landing, and Rollout” dated 
July 13, 1999, contains additional go-around criteria pertinent to this flight evaluation if the 
airplane is to be approved for CAT III operation. 
 
   (b) As with the takeoff mode, the go-around roll axis control law will probably be 
a heading hold or roll attitude hold/wings-level mode.  The pitch axis control law may be an 
angle-of-attack control law system, but most modern systems will have control laws for speed 
control.  The speed should be compatible with that used for a manually controlled go-around 
without guidance. 
 
   (c) The system should not command a go-around speed less than 1.13 VSR1 for the 
go-around flap setting or the minimum control speed (e.g., VMCL) established for that particular 
airplane.  In making this evaluation, consideration should be given to the autopilot roll axis 
control law and its effect on minimum control speeds.  If the autopilot employs a wings-level 
control law, the minimum control speeds may be considerably higher than the AFM values that 
are determined with some degree of bank into the operating engine(s). 
 
   (d) Evaluate go-around performance with normal conditions for each landing flap 
setting through a full range of gross weight and c.g. conditions.  Use normal cleanup procedures 
to the appropriate go-around flap setting. 
 
   (e) Evaluate go-around performance with simulated engine failure conditions 
occurring: 
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    1 Just prior to go-around initiation; 
 
    2 Just after go-around initiation; and 
 
    3 During climb-out, both before and after initiation of altitude capture 
mode. 
 
   (f) If engine-out approach/landing approval is sought by the applicant, then 
evaluate go-around performance initiated from an engine-out approach. 
 
   (g)  It should be demonstrated that the FGS will command the correct speed to 
accomplish a go-around for the conditions in the testing described in paragraphs (d), (e), and (f), 
above.  
 
   (h)  Flight path control following an engine failure during go-around should not 
require exceptional piloting skill or alertness. 
 
   (i) Conduct go-arounds with and without, as applicable, automatic throttles, yaw 
damper, automatic ground spoilers, control wheel steering, and any other equipment 
configurations, and combinations thereof, for which the applicant is seeking certification credit.  
Include all sensor and instrument switching combinations. 
 
   (j) Evaluate Slow/Fast display behavior, if applicable, in conjunction with these 
go-around tests. 
 
   (k) Evaluate the autopilot behavior with both series and parallel rudder (if 
available) configurations, particularly in conjunction with simulated engine failure tests. 
 
   (l) Evaluate “fade-out” of parallel rudder (with simulated engine failure) during 
autopilot go-around mode transition to automatic altitude captures (if this feature is available). 
 
   (m)  Verify that when automatic go-around is engaged, subsequent momentary 
ground contact will not cause its disengagement or a mode reversion out of go-around. 
 
   (n)  Structure the test program such that altitude loss during the go-around 
maneuver can be determined as a function of height above the ground at go-around initiation.  
Altitude loss during the maneuver is directly proportional to the rate of descent when the go-
around is initiated. 
 
   (o) Go-around altitude loss is defined as the difference in altitude between the 
selection of the go-around mode and the minimum height above the ground achieved during the 
maneuver. 
 
   (p)  Go-around altitude loss information should be included in the AFM, especially 
if the airplane is to be approved for low visibility (Category I, II, or III) approaches.  An example 
of how such information has been presented in the AFM is shown in Figure 181-1: 
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Figure 181-1  Altitude Loss Versus Altitude At Go-Around Mode Initiation 
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   (q)  Evaluate the go-around maneuver under conditions with automatic spoilers 
armed and go-around initiated at an altitude low enough to result in wheel contact with the 
runway surface.  Verify that momentary deployment of the ground spoilers under these 
conditions is acceptable. 
 
   (r)  In addition to evaluating speed performance to the criteria shown in Table 2 of 
AC 25-15, “Approval of Flight Management Systems in Transport Category Airplanes,” evaluate 
command bar flyability, the dynamics of the airplane while following the commanded guidance, 
etc.  The control action and flight path during the initial rotation should not be significantly 
different from those of a manually controlled go-around without command guidance. 
 
   (s)  The go-around from any point on the approach to touchdown should not 
require exceptional piloting skill, alertness, or strength, and should ensure that the airplane 
remains above the obstacle limitation surface specified in AC 120-29A, “Criteria for Approval of 
Category I and Category II Weather Minima for Approach.” 
 
   (t)  Evaluate pitch axis go-around mode behavior with simultaneous heading 
select turns during climb-out. 
 
   (u)  Evaluate mode transitions from go-around to other approved modes using 
flight director, HGS, and automatic pilot guidance (i.e., from pitch axis go-around mode to IAS 
Hold, Vertical Speed, Altitude Hold, or VNAV; from roll axis go-around mode to Heading 
Select VOR, or LNAV, etc.). 
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   (v)  Evaluate all reversion modes appropriate to the design.  Most speed command 
go-around modes will be fail-passive (or fail-soft) and will probably contain reversion modes.  
Consult the system description, the FMEA, and the responsible system engineer for definition of 
the appropriate evaluation.  It may be possible to perform this testing in a simulator. 
 
   (w)  Evaluate adequacy of mode annunciations and controls and displays associated 
with the go-around maneuver.   
 
   (x)   Evaluate the go-around pitch attitude limit (if applicable) for compatibility and 
command harmony. 
 
   (y)  “Fixed Pitch Go-Around.”  Missed approaches using the calibrated attitude 
markings on the Attitude Director Indicator (ADI) should be demonstrated to be an acceptable 
alternative technique for low visibility operations (CAT II & CAT III), in the event that 
automatic or flight director go-around modes are not available.  A sufficient sample size should 
be collected to establish the transitional altitude loss.  The target attitude for go-around (13 to 17 
degrees is usually the target) should be established by the applicant.  Use normal cleanup 
procedures.  Simulate various failure conditions that would force the pilot to revert to this 
configuration. (e.g., simultaneous loss of autoland and go-around computation). 
 
   (z)   Quantitative time-history data should be derived with an on-board data system 
to facilitate post-flight evaluation of performance and to provide TIR records. 
 
  (6) FGS Instrument Landing System (ILS) Approach Mode. 
 
   (a) A complete and comprehensive description of flight test evaluation for 
automatic pilot and flight director system ILS approach mode approval, including HUDs, is 
contained in AC 120-29A, “Criteria for Approval of Category I and Category II Weather Minima 
for Approach,” and in AC 91-16, “Category II Operations - General Aviation Airplanes.”  
Further guidance is provided below: 
 
   (b) For airworthiness approval to Category I (CAT I) minimums:  
 
    1 Conduct a series of approaches (usually 4 or more) on Type I rated ILS 
beams to a radio altitude of 160 ft. (20 percent below the CAT I decision height of 200 ft). 
 
    2 Conduct the approaches with and without automatic throttles, with and 
without yaw damper, alternate flap setting and so forth, for all configurations and combinations 
of equipment for which the applicant seeks approval. 
 
    3 At least three Type I beams should be included in the evaluation, one of 
which should exhibit very noisy localizer and glideslope characteristics. 
 
    4 Failure modes/conditions described in paragraph 181b(7)(f) of this AC, 
appropriate to ILS approach modes, should be conducted. 
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    5 The definition of a successful approach is one that positions the airplane 
at the decision height (DH) such that the airplane can be safely landed without exceptional 
piloting skill or strength. 
 
   (c) For airworthiness approval to Category II (CAT II) minimums for each 
candidate system (automatic pilot, flight director, and HGS): 
 
    1 Conduct a series of approaches on Type II rated ILS beams to a radio 
altitude of 100 feet. 
 
    2 For initial system approval, approximately 20 approaches (total for each 
affected system) are required to examine each configuration/combinations of equipment for 
which the applicant seeks credit. 
 
    3 At least three Type II beams should be included in the evaluation. 
 
    4 When relatively minor changes are made to the approach control laws or 
when a different display (i.e., flight director instrument) is used with the system, approximately 9 
approaches (total for each affected system) have been found to be sufficient (i.e., 3 each on 3 
different ILS beams). 
 
    5 The approaches should be made in conditions chosen to show that the 
performance is satisfactory within the permitted extremes of weight, c.g., wind speed, localizer 
capture angles, glideslope captures from below and above (if appropriate) the beam, captures at 
various ranges from runway threshold, etc. 
 
   (d) If approval is sought for ILS approaches initiated with one engine inoperative, 
and with the airplane trimmed at the point of glide path intercept, the automatic flight control 
system should be capable of conducting the approach without further manual trimming.  For 
airplanes with three or more engines, the loss of a second critical engine should not cause a rate 
of lateral deviation from the ILS course greater than 3° per second (averaged over a 5-second 
period), or produce hazardous attitudes. 
 
   (e) Unless it is shown that failure of the automatic pilot system to disengage 
during the approach, when the pilot operates the quick release control on the control wheel, is 
improbable, then it should be demonstrated that the pilot can control the airplane manually 
without operating any of the other disengagement controls. 
 
   (f) It is possible that many of the above tests can be performed in a simulator. 
 
  (7) FGS Control Wheel Steering (CWS). 
 
   (a) It should be possible for the pilot to overpower the automatic pilot system, and 
achieve the maximum available control surface deflection, without using forces that exceed the 
pilot control force limits specified in § 25.143(d). 
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   (b) The maximum bank and pitch attitudes that could be achieved without 
overpowering the automatic pilot system should be limited to those necessary for the normal 
operation of the airplane.  Typically, these attitudes are ±35° in roll and +20° to -10° in pitch. 
 
   (c) It should be possible to carry out all normal maneuvers and to counter normal 
changes of trim due to change of configuration etc., within the range of flight conditions in 
which control wheel steering may be used, without encountering excessive discontinuities in 
control force that might adversely affect the flight path. 
 
   (d) The stall and stall recovery characteristics of the airplane should remain 
acceptable with control wheel steering in use. 
 
   (e) In showing compliance with § 25.143(f), account should be taken of such 
adjustment to trim as may be carried out by the automatic pilot system in the course of 
maneuvers that can reasonably be expected.  Some alleviation may be acceptable in the case of 
unusually prolonged maneuvers, provided the reduced control forces would not be hazardous. 
 
   (f) If the use of this mode for takeoff and landing is to be permitted, it should be 
shown that: 
 
    1 Sufficient control, both in amplitude and rate, is available without 
encountering force discontinuities; 
 
    2 Reasonable mishandling is not hazardous (e.g., engaging the autopilot 
while the pitch or roll controls are held in an out-of-trim position); and 
 
    3 Runaway rates and control forces are such that the pilot can readily 
overpower the automatic pilot with no significant error in flight path. 
 
  (8) Environmental Conditions. 
 
   (a) Some environmental conditions have created operational problems during FGS 
operations. The flight demonstration program should expose the FGS to a range of 
environmental conditions as the opportunity presents itself.  These include winds, mountain-
wave, turbulence, icing, etc.  However, some specific test conditions may have to be flown to 
find operational conditions that are not readily achieved during the normal flight test program. 
 
   (b) FGS use in icing conditions may mask the onset of an airplane condition (e.g., 
out of trim condition) that would present the pilot with handling difficulties if the FGS is 
disengaged, particularly if the FGS suddenly disengages automatically.  The opportunity should 
be taken during the flight test program to evaluate the FGS during natural icing conditions, 
including during shedding of the ice, as applicable.  The operation of the FGS should also be 
evaluated during basic airplane performance and handling qualities compliance flight tests with 
simulated ice accretions installed.  (See AC 25-25, “Performance and Handling Characteristics in 
the Icing Conditions Specified in part 25, Appendix C, dated September 10, 2007,” for examples 
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of a flight test program for evaluating airplane performance and handling qualities in icing 
conditions and for guidance on ice accretions to use for flight testing.)  The following test 
conditions should also be considered for evaluating FGS performance in icing conditions: 
 
    1 Low speed protection. 
 
     (aa) With all high lift devices retracted, slow down at a rate not to exceed 
1 knot per second until either the autopilot automatically disengages (with an associated alert) or 
a low speed protection function engages (which may be a low speed alert). 
 
     (bb) Recovery should be initiated no less than three seconds after the onset 
of an appropriate alert. 
 
     (cc) The airplane should exhibit no hazardous characteristics. 
 
    2 Coupled approach.  If the autopilot has the ability to fly a coupled 
instrument approach and go-around, the following test conditions should be evaluated: 
 
     (aa) Instrument approach, using all normal flap selections. 
 
     (bb) Go-around, using all normal flap selections. 
 
     (cc) Glideslope capture from above the glidepath. 
 
    3 If the airplane accretes or sheds ice asymmetrically, it should be possible 
to disengage the autopilot at any time without unacceptable out-of-trim forces. 
 
    4  General maneuverability should be assessed, including normal turns, and 
the maximum angle of bank commanded by the FGS in one direction followed by a rapid 
reversal of command reference to the maximum FGS angle of bank in the other direction. 
 
  (9) Failure Modes/Malfunction Tests. 
 
   (a) General. 
 
    1 Failure conditions of the system should be simulated in such a manner as 
to represent the overall effect, and worse case effect, of each failure condition about all axes.  
The test method for most failure conditions will require some type of fault simulation technique 
with controls that provide for controlled insertion and removal of the type of fault.  The insertion 
point will typically be at a major control or guidance point on the airplane (for example, a 
control surface command, guidance command, or power/thrust command). 
 
    2 Investigations should include the effects of any failure conditions 
identified for validation by a system safety assessment conducted to show compliance with 
§ 25.1309(d). 
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    3 The safety assessment process may identify vulnerabilities to failure 
conditions involving hardovers, slowovers, or oscillatory behavior.  The various types of effect 
will result in differing airplane responses and cues to alert the flightcrew to the failure condition.  
The recognition point should be that at which a line pilot in non-visual conditions may be 
expected to recognize the need to take action.  Recognition of the malfunction may be through 
the behavior of the airplane or a reliable alerting system.  The recognition point should be 
identified by the test pilot.  Control column or wheel movements alone should not be used for 
recognition.   
 
    4 After the recognition point, action by the test pilot should be delayed to 
simulate the time it would take for a line pilot to take control after recognizing the need for 
action.  The test condition is considered completed when a stable state is reached as determined 
by the test pilot.  A three-second delay added to the measured time increment between pilot 
recognition of an automatic pilot malfunction and pilot corrective action has been considered 
acceptable for climb, cruise, and descent phases of flight.  A one-second delay is considered 
appropriate for flight phases where the crew is expected to be closely monitoring FGS control 
inputs, such as during approach, and for FGS use during takeoff from shortly after liftoff through 
flap retraction.  For control wheel steering (CWS) mode of operation during takeoff, go-around, 
and landing, and for autoland and go-around mode hardovers, no delay time need be applied.   
 
    5 Satisfactory airplane response to autopilot hardovers should be shown 
throughout the entire certificated airspeed/altitude flight envelope.  Since loading limitations of 
the test airplane preclude investigation of the entire flight envelope for which certification is 
requested, simulation results may be used to validate response in the unreachable c.g. vs. weight 
combinations. 
   
    6 The nominal worst-case weight/c.g. combinations achievable by the test 
airplane, as predicted by simulation results, should be flight tested.  The justification for 
selection of the weight/c.g. combinations proposed for testing should be submitted for FAA 
review prior to type inspection authorization (TIA) issuance. 
 
    7 The analysis should also present a comprehensive exploration of airplane 
“g” responses throughout the weight-c.g.-airspeed-altitude flight envelope, including worst case 
and envelope boundary conditions.  The analysis should include flight test and simulator 
responses adjusted for the presence of worst-case system tolerance effects. 
 
    8 During recovery from an automatic pilot system malfunction, the pilot 
may overpower the autopilot or disengage it.  The pilot should be able to return the airplane to its 
normal flight attitude under full manual control, without exceeding the loads or speed limits 
appropriate to the flight condition, without engaging in any dangerous maneuver during 
recovery, and without control forces exceeding the values given in § 25.143(d). 
 
    9 If an autothrottle is installed, the malfunctions should be examined with 
and without the autothrottle operating. 
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    10 The airplane should be instrumented such that parameters appropriate to 
the tests are recorded (e.g., normal acceleration, airspeed, altitude, pitch and roll attitude, 
automatic pilot engagement discrete). 
 
   (b) Oscillatory Tests. 
 
    1 An investigation should be made to determine the effects of an oscillatory 
signal of sufficient amplitude to saturate the servo amplifier of each device that can move a 
control surface.  The investigation should cover the range of frequencies that can be induced by a 
malfunction of the automatic pilot system and systems functionally connected to it, including an 
open circuit in a feedback loop.  The investigated frequency range should include the highest 
frequency that results in apparent movement of the system driving the control surface to the 
lowest elastic or rigid body response frequency of the airplane.  Frequencies less than 0.2 Hz 
may, however, be excluded from consideration.  The investigation should also cover the normal 
speed and configuration ranges of the airplane.  The results of this investigation should show that 
the peak loads imposed on the parts of the airplane by the application of the oscillatory signal are 
within the limit loads for these parts.  Flight guidance systems that contain integral performance 
envelope limiting cut-out functions may be exempt from this requirement, provided the monitor 
is demonstrated to have sufficient integrity. 
 
    2 The investigation may be accomplished largely through analysis with 
sufficient flight data to verify the analytical studies, or largely through flight tests with analytical 
studies extending the flight data to the conditions that impose the highest percentage of limit 
load to the parts. 
 
    3 When flight tests are conducted in which the signal frequency is 
continuously swept through a range, the rate of frequency change should be slow enough to 
permit determination of the amplitude of response of any part under steady frequency oscillation 
at any critical frequency within the test range. 
 
   (c) Climb, Cruise and Descent Flight Regimes. 
 
    1 The more critical of the following should be induced into the FGS.  If 
autothrottles are installed, they should be operating, and vertical gyro mechanical failures should 
not be considered: 
 
     (aa) A signal about any axis equivalent to the cumulative effect of any 
single failure, including autotrim, if installed. 
 
     (bb) The combined signals about all affected axes, if multiple axis failures 
can result from the malfunction of any single component. 
 
    2 Corrective action should not be initiated until three-seconds after the pilot 
has become aware, either through the behavior of the airplane or a reliable failure warning 
system, that a malfunction has occurred. 
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    3 The simulated failure and the subsequent corrective action should not 
result in accelerations normal to the flight path below zero g or above 2 g, speeds beyond 
VFC/MFC, or result in dangerous dynamic conditions or deviations from the flight path.  The 
positive “g” limitation may be increased up to the positive design limit maneuvering load factor, 
provided adequate analysis and flight test measurements are conducted to establish that no 
resultant airplane load is beyond limit loads for the structure, including a critical assessment and 
consideration of the effects of structural loading parameter variations, (i.e., c.g., load 
distribution, control system variations, etc.).  Analysis alone may be used to establish that limit 
loads are not exceeded where the airplane loads are in the linear range of loading, (i.e., 
aerodynamic coefficients for the flight condition are adequately established and no significant 
nonlinear air loading exists).  If significant nonlinear effects could exist (e.g., buffet loads), flight 
loads survey measurements may be necessary to substantiate that the limit loads are not 
exceeded. 
 
    4 The power or thrust for climb should be the most critical of that used: 
 
     (aa) In the performance climb demonstrations; 
 
     (bb) In the longitudinal stability tests; or  
 
     (cc) For normal operational speeds. 
 
    5 The altitude loss for the cruise condition is the difference between the 
observed altitude at the time the malfunction is introduced, and the lowest altitude observed in 
the recovery maneuver. 
 
   (d) Maneuvering Flight. 
 
    1 Maneuvering flight tests should include turns with the malfunctions 
introduced when maximum bank angles for normal operation of the system have been 
established, and in the critical airplane configuration and stages of flight likely to be encountered 
when using the automatic pilot. 
 
    2 A one second delay time following pilot recognition of the malfunction, 
through the behavior of the airplane or a reliable failure warning system, should be used for 
maneuvering flight malfunction testing. 
 
    3 The altitude loss, for maneuvering flight testing, is the difference between 
the observed altitude at the time the malfunction is introduced, and the lowest altitude observed 
in the recovery maneuver. 
 
   (e) Approach.  There are two types of approach operations to consider – an 
approach with vertical path reference and one without vertical path reference.  The approach 
with vertical path reference should be assessed against ground-based criteria using a deviation 
profile assessment.  A height loss assessment should be used for approaches without vertical 
path reference. 
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    1 Fault Demonstration Process.  First determine the worst-case malfunction 
for each vertical flight path mode that may be used to conduct an approach (e.g., ILS, MLS, 
GLS, flight management system/RNAV, vertical speed, flight path angle), based on factors such 
as the following: 
 
     (aa)  Failure conditions identified by the system safety assessment. 
 
     (bb) System characteristics such as variations in authority or monitor 
operation. 
     (cc) Mitigation provided by any system alerts. 
 
     (dd) Aircraft flight characteristics relevant to failure recognition. 
 
    2 Once the worst-case malfunction has been determined, flight tests of the 
worst-case malfunction should be flown in representative conditions (for example, coupled to an 
ILS), with the malfunction being initiated at a safe height.  The pilot should not initiate recovery 
from the malfunction until one second after the recognition point.  The delay is intended to 
simulate the variability in response to effectively a “hands off” condition.  It is expected that the 
pilot will follow through on the controls until the recovery is initiated. 
 
    3 Assessment of Approach With Vertical Path Reference.  Figure 181-2, 
“Deviation of Profile Method,” depicts the deviation profile method.  The first step is to identify 
the deviation profile from the worst-case malfunction.  The next step is to “slide” the deviation 
profile down the glidepath, until it is tangential to the 1:29 line or the runway.  The failure 
condition contribution to the minimum use height (MUH)-approach may be determined from the 
geometry of the airplane wheel height determined by the deviation profile, relative to the 1:29 
line intersecting a point 15 feet above the threshold. 
 
  NOTE: The MUH-approach is based on the recovery point for the following reasons: 
 
     (aa) It is assumed that in service the pilot will be “hands off” until the 
autopilot is disengaged at the MUH in normal operation. 
 
     (bb) The test technique assumes a worst-case based on the pilot being 
“hands off” from the point of malfunction initiation to the point of recovery. 
 
     (cc) A failure occurring later in the approach than the point of initiation of 
the worst-case malfunction described above is therefore assumed to be recovered earlier and in 
consequence to be less severe. 
 
    4  Assessment of Approach Without Vertical Path Reference.  Figure 181-3 
depicts the height loss method.  A descent path of 3 degrees, with nominal approach speed, 
should be used unless the autopilot is to be approved for significantly steeper descents. The 
vertical height loss is determined by the deviation of the aircraft wheel height relative to the 
nominal wheel flight path. 
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Figure 181-2  Deviation Profile Method 
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Figure 181-3  Height Loss Method 
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   (f) Autopilot Override. 
 
    1 Initial Tests. The initial tests to demonstrate compliance should be 
accomplished at an intermediate altitude and airspeed, e.g., 15,000 feet MSL and 250 knots.  
With the autopilot engaged in Altitude Hold, the pilot should apply a low force to the control 
wheel (or equivalent) and verify that the automatic trim system does not produce motion 
resulting in a hazardous condition.   
 
     (aa) Automatic Disengagement.  Disengagement caused by flightcrew 
override should be verified by applying an input on the control wheel (or equivalent) to each axis 
for which the FGS is designed to disengage, that is, the pitch and roll yoke, or the rudder pedals 
(if applicable).  The pilot should gradually increase the applied force to the control wheel (or 
equivalent) until the autopilot disengages.  When the autopilot disengagement occurs, observe 
the transient response of the airplane.  Verify that the transient response is no more than minor as 
required by § 25.1329(d). The inputs by the pilot should increase for each test case to a point 
where the input is sharp and forceful, so that the FGS can immediately be disengaged for the 
flightcrew to assume manual control of the airplane. 
 
     (bb) Non-Automatic Disengagement.  If the autopilot is designed such that 
it does not automatically disengage during an autopilot override—and instead provides a flight 
deck alert to mitigate any potentially hazardous conditions—the timeliness and effectiveness of 
this alert should be evaluated.  The pilot should follow the evaluation procedure identified above 
until such time as an alert is provided.  At that time, the pilot should respond to the alert in a 
responsive manner consistent with the level of the alert (that is, a caution, a warning) and with 
the appropriate flightcrew procedure defined for that alert.  When the autopilot is manually 
disengaged, observe the transient response of the airplane and verify that the transient response 
is no more than minor as required by § 25.1329(d). 
 
    (2)  Repeated Test Conditions.  After the initial tests have been successfully 
completed, the above tests should be repeated at higher altitudes and airspeeds until reaching 
MMO at high cruise altitudes. 
 
   (10) Airplane Flight Manual Information.  The following information should be 
provided in the AFM: 
 
    (a) Operating Limitations Section:  airspeed and other applicable operating 
limitations for use with the autopilot. 
 
    (b) Operating Procedures Section:  the normal operation information. 
 
    (c) Non-Normal/Emergency Operating Procedures Section:  A statement of 
the maximum altitude loss experienced during malfunction tests in the cruise and maneuvering 
flight regimes.  A statement of the altitude loss should be provided.  Further, it should be stated 
that a 3-degree glideslope was used, and the altitude loss was measured from the glideslope path 
to a point where maximum vertical deviation from the glideslope exists. 
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[182. - 185.] [Reserved] 
 
 

Section 3.  Electrical Systems and Equipment 
 
 
186. General - § 25.1351. 
 
 a. Explanation.  Section 25.1351(a) requires that the electrical generating capacity, and 
number and kinds of power sources, be determined by an electrical load analysis, and meet the 
requirements of § 25.1309. 
 
 b. Procedures. 
 
  (1) Section 25.1351(a) - Electrical System Capacity.  Section 25.1351(a) requires the 
generating capacity, and number and kinds of power sources, to be determined by an electrical 
loads analysis and meet the requirements of § 25.1309.  Additionally, verify by flight test that 
cooling is satisfactory to maintain component temperatures within the manufacturer’s limits, 
both on the ground and in flight, with the electrical system operating at maximum limit load.   
 
  (2) Section 25.1351(b)(1) - Electrical Power Configuration.   
 
   (a) Verify that electrical power sources function properly when independent and 
when connected in combination. 
 
   (b) For airplanes with autoland capability, verify proper electrical power 
reconfiguration for each available autoland mode. 
 
   (c) Verify that no hazardous airplane systems reaction occurs, to a partial loss of 
the electrical distribution system by simulating loss of individual busses.  Simulate loss of 
individual busses by opening circuit breakers/relays.  
 
   (d) Verify proper transfer of electrical power between the different power sources 
(i.e., external power, APU, engines). 
    
  (3) Section 25.1351(b)(2) - Failure of Power Source.  Verify proper operation of 
system during simulated power failures by flight test functional demonstrations.  The applicant 
must show by design analysis or laboratory demonstration, that no failure or malfunction of any 
power source, including the battery can create a hazard or impair the ability of remaining sources 
to supply essential loads. 
 
  (4) Section 25.1351(b)(3) - System Voltage and Frequency.  For probable operating 
conditions, verify that system voltage and frequency, as applicable, at the terminals of all 
essential load equipment can be maintained within the limits for which the equipment is 
designed.  This may be accomplished in a laboratory environment. 
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  (5) Section 25.1351(b)(4) - System Transients.  The applicant must show by design 
analysis, laboratory demonstration, and/or flight demonstration that system transients due to 
switching, fault clearing, or other causes during normal operations do not make essential loads 
inoperative, and do not cause a smoke or fire hazard.  Flight test recordings may be useful to 
verify laboratory demonstrations of system transients and electromagnetic interference (EMI) 
during normal operations. 
 
  (6) Section 25.1351(b)(5) - Power Source Disconnection.   
 
   (a) Verify that there are means accessible in flight, to the appropriate 
crewmembers, for the individual and collective disconnection of the electrical power sources 
from the system. 
 
   (b) Demonstrate that the airplane can be flown with one less generator than 
allowed by the MMEL.  Also verify that prior to switching off the non-essential electrical loads 
specified in the AFM, the remaining generators’ short term (up to 5 minutes) capacity is not 
exceeded. 
 
  (7) Section 25.1351(b)(6) - Power Source Indicators.   
 
   (a) Verify that there are means to indicate, to the appropriate crewmembers, the 
generating system quantities essential for the safe operation of the system, such as the voltage 
and current supplied by each power source, if appropriate to type of aircraft, i.e., glass cockpit 
design may provide information on multi-function display (MFD), electronic centralized aircraft 
monitor (ECAM), engine indicating and crew alerting system (EICAS), etc.) 
 
   (b) Verify proper operation of electrical power system warning, caution, and 
advisory indications, if any, and that these indications comply with §§ 25.1309(c) and 25.1322. 
 
  (8) Section 25.1351(c) - External Power.  If provisions are made for connecting 
external power to the airplane, and that external power can be electrically connected to 
equipment other than that used for engine starting, verify that a means is provided to ensure that 
no external power supply having a reverse polarity, a reverse phase sequence, overvoltage, or 
reverse phase/neutral can supply power to the airplane’s electrical system.  This demonstration 
may be accomplished in a laboratory environment. 
 
  (9) Section 25.1351(d) - Operation Without Normal Electrical Power.  The applicant 
must demonstrate that the airplane can be operated safely in visual flight rules (VFR) conditions, 
for a period of not less than five minutes, with the normal electrical power (electrical power 
sources excluding the battery) inoperative, with critical type fuel (from the standpoint of 
flameout and restart capability), and with the airplane initially at the maximum certificated 
altitude. 
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  (10) Emergency Electrical Power System.  
 
   (a) For airplanes with a type certification basis that includes Amendment 25-23, 
the FAA has applied a general policy that following total failure of the electrical power system, 
if not shown to be extremely improbable, emergency electrical power should be available to 
power instrument displays, systems, equipment, or parts of the airplane essential for safety of 
flight during IMC operations for at least 30 minutes.  It may also be advisable to check that in 
the event when normal operation is reestablished following the use of emergency power devices, 
such devices can withstand, or at least do not adversely affect, the subsequent reversion to 
“normal” operation. 
 
    1 Thirty (30)-Minute Requirement Test.  Accomplish ground and/or flight 
testing to verify that the main battery/non time-limited power source (e.g., auxiliary power unit 
(APU), ram air turbine, pneumatic or hydraulic motor, etc.) is sufficient to power the essential 
loads required for safety of flight during IMC operations for at least 30 minutes.  If the 
emergency power is provided by a non time-limited power source, the main battery capacity 
should be sufficient for at least 5 minutes to show compliance with § 25.1351(d).  Essential loads 
for safety of flight during IMC operations are considered to include the following: 
 
     (aa) Those essential for continued safe flight and landing during visual 
meteorological conditions (VMC) operations. 
 
     (bb) One display of attitude, direction, airspeed and altitude as 
specifically stated in § 25.1333(b), a free-air temperature indicator, and pitot/static heat 
capability, if required. 
 
     (cc) Communication, intercommunication, and navigation capability (for 
IMC operations) necessary cockpit and instrument lighting, and any other instrument displays, 
systems, equipment, or parts of the airplane that are necessary to safely complete the flight. 
 
    2 Perform a VMC approach and landing with the airplane powered with 
emergency electrical power only.  Verify acceptable operation of the emergency equipment. 
 
    3 Perform a simulated night IMC approach and landing with the airplane 
powered with emergency electrical power only.  Verify acceptable visibility and operation of the 
emergency equipment.  This test can be accomplished on a simulator. 
 
   (b) Electrical Attitude, Altitude, Direction, and Airspeed Systems Using Battery 
Standby Power. 
 
    1 The FAA has published additional policy that applies to certification of 
flight instrument installations where: (1) all displays of any of the essential flight information 
(e.g., altitude, attitude, airspeed, or direction) require electrical power; and (2) the back-up 
source of electrical power is time-limited.  See Policy Statement PS-ANM100-2001-116, “Policy 
Statement with respect to All Electrical Attitude, Altitude, Direction and Airspeed Systems using 

 282



10/16/12  AC 25-7C  

Battery Standby Power,” dated April 27, 2001. 
 
    2 Flight evaluations of such installations should be used to make sure that  
all the essential safety related flight instrument parameters are displayed, that the pilots do not 
have to take any action to display them when normal power is lost, and that the standby 
display(s) can be effectively used for all flight tasks required for safe flight and landing. 
 
187. Electrical Equipment and Installations - § 25.1353.  [Reserved] 
 
188. Distribution System - § 25.1355. 
 
 a. Explanation.  Section 25.1355(a) defines the distribution system, including the 
distribution busses, their associated feeders, and each control and protective device. 
 
 b. Procedures.  Section 25.1355(c) - Independent Power Sources.  For equipment or 
systems that are required to have two independent sources of electrical power, verify by airplane 
demonstration that in the event of a failure of one power source for such equipment or system, 
another power source (including its separate feeder) is automatically provided or can be 
manually selected to maintain equipment or system operation. 
 
189. Circuit Protective Devices - § 25.1357.  [Reserved] 
 
190. Electrical System Tests - § 25.1363. 
 
 a. Explanation.  Laboratory tests are conducted to verify that the control, regulation, 
protection, and automatic operation of the electrical system comply with §§ 25.1351 through 
25.1357.  Laboratory tests must be conducted on a mockup using the same type and length of 
feeder wires, and generating equipment that will be installed in the airplane.  Additionally, the 
generator drives must simulate the actual prime movers on the airplane with respect to their 
reaction to generator loading, including loading due to faults.  Section 25.1363(b) states that for 
each flight condition that cannot be adequately simulated in the laboratory or by ground tests on 
the airplane, a flight test must be conducted. 
 
 b. Procedures.  Negative Acceleration Performance - Verify that no hazardous 
malfunctions of the electrical power system occur when the airplane is operated at the negative 
accelerations within the flight envelope prescribed in § 25.333.  This should be shown for the 
greatest duration expected for the acceleration.  This test is normally conducted in conjunction 
with the engine negative acceleration test to comply with § 25.943. 
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Section 4.  Lights 

 
191. Instrument Lights - § 25.1381. 
 
 a. Explanation.  None. 
 
 b. Procedure.  Under actual or simulated nighttime conditions, evaluate instrument lighting 
for the following characteristics: 
 
  (1) Illumination of adequate intensity is provided for all appropriate cockpit 
instruments/controls/equipment. 
 
  (2) Illumination is of appropriate color, intensity is evenly distributed, and is free of 
objectionable flicker, glare, or reflection. 
 
  (3) Dimming capability allows smoothly adjustable illumination intensity between 
appropriate limits. 
 
192. Landing Lights - § 25.1383. 
 
 a. Explanation.  None 
 
 b. Procedure.  The landing lights should be evaluated to determine that they: 
 
  (1) Are aimed properly, provide sufficient intensity to facilitate night landings, and are 
acceptable at different pitch attitudes during landing approach with various c.g., flap settings and 
airspeed; 
 

(2) Are not a source of objectionable glare or halation; and 
 

(3) Are functional in MMEL configurations and during operations in adverse weather. 
 
193. Position Light System Installation - § 25.1385. 
 
 a. Explanation.  Section 25.1385(a) requires the position light system to comply with 
detailed technical specifications contained in §§ 25.1387 through 25.1397.  These sections define 
location, color, visibility, and intensity requirements with considerable precision.  An in depth 
examination of the installed position light system with regard to these requirements is not 
necessarily considered appropriate or within the scope of a flight test evaluation, unless it 
becomes apparent while accomplishing the following procedures that further examination is 
warranted. 
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 b. Procedures. 
 
  (1) Operate the position light system.  Verify that general locations and color are as 
prescribed in § 25.1385(b) and (c). 
 
  (2) Verify that position light illumination does not cause objectionable glare to the 
flightcrew. 
 
[194. - 200.] [Reserved] 
 
201. Anti-Collision Light System - § 25.1401. 
 
 a. Explanation. 
 
  (1) Section 25.1401(a)(2) requires the anti-collision light system to comply with the 
detailed specifications contained in § 25.1401(b) through (f).  These sections define coverage, 
color, flash rate, and intensity requirements with some precision.  An in depth examination of the 
installed anti-collision system, with regard to all of these requirements, is not necessarily 
considered appropriate or within the scope of a flight test evaluation, unless it becomes apparent 
while accomplishing the following procedures that further examination is warranted. 
 
  (2) Policy statement ANM-111-06-001, “Modifications Which Impact Airplane 
Exterior Lighting,” dated May 14, 2007, specifies that applicants need to perform an analysis for 
airplane modifications involving external antenna installations in order to evaluate compliance to 
§ 25.1401.  The analysis should include an evaluation of the impact of the new installation on the 
anticollision light system and its associated master minimum equipment list (MMEL) dispatch 
relief. 
 
 b. Procedures. 
 
  (1) Operate the anti-collision light system.  Verify that one or more red or white lights 
are installed in locations that appear to provide the required visibility and which flash at the 
appropriate rates. 
 
  (2) Verify that the anti-collision lights are not a source of objectionable glare or 
halation, to the flightcrew. 
 

(3) Evaluate anti-collision lights during flight in clouds. 
 
202. Wing Icing Detection Lights - § 25.1403. 
 
 a. Explanation.  If the airplane is intended to be certificated for night flight into known 
icing conditions, a means for visually or otherwise determining the extent of icing on critical 
surfaces must be provided. 
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 b. Procedures.  The wing icing detection lights, if required, should be evaluated to 
determine that they: 
 
  (1) Are aimed properly toward the appropriate surfaces, and are of sufficient intensity 
for required illumination. 
 
  (2) Are not a source of objectionable glare, reflection, or halation. 
 
 

 Section 5.  Safety Equipment 
 
 
[203. - 207.] [Reserved] 

 
 

Section 6.  Miscellaneous Equipment 
 
 
208. Electronic Equipment - § 25.1431. 
 
 a. Explanation.  Section 25.1431(d) requires verification that any electronic equipment will 
not cause essential loads to become inoperative as a result of electrical power supply transients 
or transients from other causes.  Although this requirement explicitly addresses electrical power 
supply transients, this requirement is also implicit in other part 25 requirements, specifically:  
 
  (1) Section 25.1310(a) (Power source capacity and distribution), which states that each 
installation whose functioning is required and that requires a power supply is considered an 
“essential load” on the power supply.  It requires that the power sources and the system must be 
able to continue to supply power loads under probable critical operating combinations and for 
probable durations;  
 
  (2) Section 25.1351(b) (Electrical systems and equipment-- General), which requires 
that electrical generating systems must be designed so that no failure or malfunction of any 
power source can create a hazard or impair the ability of remaining sources to supply essential 
loads; and  
 
  (3) Section 25.1353(a) (Electrical equipment and installations), which requires that 
electrical equipment and controls must be installed so that operation of any one unit or system of 
units will not adversely affect the simultaneous operation of any other electrical unit or system 
essential to safe operation. 
 
 b. Procedures. 
 
  (1) Evaluate the possibility of interaction between different systems of communications 
and navigation equipment.  Momentary deflection or flicker can be permitted if it does not result 
in any deviation to the aircraft flight path when flying a coupled navigation mode.  (Flicker 
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frequencies above 55 Hz for stroke symbology or non-interlaced raster and 30/60 Hz for 
interlaced raster are generally satisfactory.)  Loss of required function of the usable and assigned 
frequencies in the national airspace system should be considered unacceptable. 
 
  (2)  Equipment sensitivity to a variety of transient signal conditions is accomplished 
during laboratory environmental testing (usually accomplished per the methods contained in 
RTCA Document No. RTCA/DO-160).  However, equipment sensitivity to normal airplane 
systems electrical transients should be evaluated during flight testing.  This can be accomplished 
by observing the operation of flight essential equipment while: 
 
   (a) Reconfiguring the electrical generating and distributing system (e.g., 
opening/closing bus-tie breakers, supplying the various electrical busses with other source of 
power – e.g., right main bus from left integrated drive generator, etc).   
 
   (b) Switching on/off high current demand systems such as galley ovens, hydraulic 
pumps, cabin lighting, in-flight entertainment systems, power supply systems for portable 
electronic devices, seat actuators, and  
 
   (c) Any other high-current airplane system that would normally be operated 
during flight. 
  
 
[209. - 215.]  [Reserved] 
 
 
216. Equipment Standards for Oxygen Dispensing Units - § 25.1447.   
 
 a. Explanation.   
 
  (1) Section 25.1447(c)(2)(i) requires that each flight crewmember be provided with an 
oxygen dispensing unit that can be taken from its ready position and placed on the face using one 
hand, properly secured, sealed, and supplying oxygen upon demand within five seconds without 
disturbing eyeglasses or causing delay in accomplishing emergency duties. 
 
  (2) Showing compliance with this rule involves measuring human performance, which is 
inherently variable.  In order to take variations in human performance into account, multiple tests of 
donning each oxygen mask should be conducted.  In determining whether compliance has been shown, it 
is important to consider both the average mask donning time and the variation in donning times as noted 
below: 
 
   (a) The average time to don the mask should indicate that the five-second requirement is 
met. 
 
   (b) Even if the average donning time is five seconds or less, it may take longer than five 
seconds to don the mask for 50 percent or more of the tests.  Therefore, it is also important to establish a 
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criterion regarding the distribution of test results in order to ensure that the mask can be consistently 
donned within five seconds. 
 
 b. Procedures. 
 
  (1) A donning test should be conducted from each required flight crewmember station whenever 
the oxygen mask, storage location, or means of stowing the mask is established or changed.  Each 
donning test should consist of at least five donning events.  The donning tests may be conducted in an 
airplane, a simulator, or a flight deck mockup that accurately reflects the proposed design. 
 
  (2) The test should be witnessed by an FAA or designated engineering representative (DER) 
test pilot.  It is acceptable, but not required, to use appropriately qualified flight crewmembers as test 
subjects. 
 
  (3) Prior to starting each mask-donning event at each pilot station, the pilot should be seated at 
the design eye reference position with the seat belt and shoulder harness fastened.  One hand should be on 
the control wheel and the other on the throttles.  For other flight crewmember duty positions (e.g., flight 
engineer), appropriate seating and hand positions may be determined on a case-by-case basis. Either hand 
may be used to don the mask. 
 
  (4) Since § 25.1447(c)(2)(i) requires the five second donning criterion to be met without 
disturbing eyeglasses, the test subjects must wear glasses during the test.  Daytime lighting conditions 
may be used, unless flight deck arrangement and lighting systems suggest that locating and retrieving the 
mask may be difficult in nighttime lighting conditions. 
 
  (5) Timing should begin when the start of the test event is announced by the test director, and 
end when the mask is properly sealed on the pilot's face with eyeglasses in place.  The method of 
initiating the test event and determining when the mask is sealed is at the discretion of the test 
participants.  A stopwatch, or other means shown to be reasonably accurate, may be used to time the tests. 
 
  (6) For each donning test: 
 
   (a) At least 80 percent of the donning events should be completed in five seconds or less. 
 
   (b) The average time for each donning test should be five seconds or less. 
 
[217. - 223.]  [Reserved] 
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Chapter 7 - Operating Limitations and Information. 

 
 

Section 1.  General.  [Reserved] 
 
 

Section 2.  Operating Limitations  [Reserved] 
 
 

Section 3.  Markings and Placards  [Reserved] 
 
 

Section 4.  Airplane Flight Manual 
 
 
224. General - § 25.1581.   
 
 a. Explanation.  The primary purpose of the AFM is to provide an authoritative source of 
information considered to be necessary for safe operation of the airplane.  Since the flightcrew is 
most directly concerned with operation of the airplane, the language and presentation of the 
flight manual should be directed principally to the needs and convenience of the flightcrew, but 
should not ignore the needs of other contributors to safe operation of the airplane in accordance 
with the applicable operating regulations.  
 
  (1) Section 25.1501 requires that the operating limitations specified in §§ 25.1503 
through 25.1533, and other information necessary for safe operation, be included in the AFM, be 
expressed in markings and placards, and also be made available by any other means that will 
convey the necessary information to the crew members. 
 
  (2) Information and data that are mandatory for an acceptable AFM are prescribed in 
§§ 25.1581 through 25.1587.  The material required by 14 CFR parts 25 and 36 must be included 
in the AFM.  At the option of the applicant, the AFM may be expanded to contain additional 
FAA approved information. 
 
  (3) The manufacturer or operator may include other “unapproved” data in a separate 
and distinctively identified portion of the AFM. 
 
 b. Reference.  See AC 25.1581-1, Change 1, “Airplane Flight Manual,” dated October 16, 
2012, for detailed guidance on the required content and general structure of the AFM. 
 
[225. - 227.] [Reserved] 
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Chapter 8 - Airworthiness:  Miscellaneous Items 
 
 
228. Design and Function Of Artificial Stall Warning and Identification Systems. 
 
 a. Applicable Regulations.  Sections 25.103, 25.201, 25.203, and 25.207. 
 
 b. Explanation.  Some airplanes require artificial stall warning systems to compensate for a 
lack of clearly identifiable natural aerodynamic stall warning to show compliance with the stall 
warning requirements of § 25.207.  A stick shaker is a recommended method of providing such a 
warning, regardless of whether or not the natural aerodynamic stall warning is clearly 
identifiable.   Similarly, some airplanes require a stall identification device or system (e.g., stick 
pusher,) to compensate for an inability to meet the stalling definitions of § 25.201 or the stall 
characteristics requirements of § 25.203.  In addition to compliance with the flight test 
requirements prescribed in paragraph 29 of this AC, certain system design and function criteria 
should also be addressed during the certification process of these airplanes.  Included are system 
arming and disarming, preflight checks, failure indications and warnings, and system reliability 
and safety.  The reliability of these systems can be evaluated in terms of the probability of the 
system not operating when required, and the safety aspects in terms of the probability of the 
system operating inadvertently.  The required reliability and safety of stall warning and 
identification systems should be defined as a function of how critical their respective functioning 
is to safety of flight. 
 
 c. Arming and Disarming. 
 
  (1) Stall warning systems should be armed any time the airplane is in flight (i.e. from 
main gear liftoff to touchdown).  However, up to the end of the takeoff rotation (i.e., until the 
takeoff pitch attitude is attained), any phase advance feature of the stall warning system (i.e., the 
portion of the algorithm for activating the stall warning system that responds to the  rate of 
change in angle-of-attack) can be inhibited.   
 
   (a) Arming of stall warning systems has typically been accomplished by a 
ground/air logic circuit, which requires the nose and/or main gear squat switches to sense air 
mode before the system is armed.  A pitch angle threshold during rotation has also been used to 
arm the stall warning system.  These types of system arming schemes provide stall warning 
protection during liftoff and initial climb, where a stall would most probably have catastrophic 
consequences.  They also provide protection against nuisance warnings during the takeoff roll, 
where the angle-of-attack (AOA) sensor vanes may be misaligned.  Service history, however, 
has shown that systems armed around the liftoff point have caused pilots to abort takeoffs due to 
false alerts resulting from stall warning system faults or failures.  In some cases, these high-
energy rejected takeoffs have resulted in overruns.  Therefore, system faults and failures that 
would lead to a false stall warning near liftoff should be made evident as early in the takeoff as 
practicable. 
 
   (b) In accordance with the requirements of § 25.207(b), if a stall warning system 
is required for any normal combination of flap and landing gear position, it must be used for all 
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combinations of flap and landing gear positions.  The purpose of this requirement is to provide a 
standard, consistent warning to the flightcrew of an operational flight envelope limit. 
 
  (2) Stall identification systems should be armed any time the airplane is in flight.   
 
   (a) The arming should take place automatically and may be provided by the same 
ground/air sensing system used for arming the stall warning system.  The stall identification 
system may be inhibited during the takeoff rotation, but should become functional immediately 
after main gear liftoff.  For airplanes with both stall warning and stall identification systems, it is 
permissible to have the stall identification system armed by operation of the stall warning 
system, provided the resulting probability of the stall identification not to operate when required 
is not greater than that specified in paragraph 228e, below. 
 
   (b) Stall identification systems may incorporate automatic disarming in flight 
regimes where the risk of stalling is extremely remote or where their unwanted operation would 
pose a threat to continued safe flight; examples of such inhibits would be high airspeed, and “g” 
cutouts (typically 0.5 g), and while the pilot is following windshear recovery flight director 
guidance. 
 
   (c) A means to quickly deactivate the stall identification system should be 
provided and be available to both pilots.  It should be effective at all times, and should be 
capable of preventing the system from making any input to the longitudinal control system.  It 
should also be capable of canceling any input that has already been applied, from either normal 
operation or from a failure condition. 
 
   (d) If a stall identification system is required to show compliance with the stall 
requirements of part 25 in one (or some) airplane configuration(s), it does not have to be used for 
stall identification in configurations where compliance can be demonstrated without it.  Unlike 
stall warning, the stall point, be it aerodynamic or artificially induced, represents an end-point 
outside the in-service operational envelope of the airplane, and, therefore, does not need to be 
provided by the same means for all flap and landing gear configurations.  Additionally, the added 
system complexity, and increased exposure to malfunctions and failures, would not warrant the 
use of a stall identification system for configurations where it is not required. 
 
 d. Indicating and Warning Devices. 
 
  (1) A method should be provided to allow the pilot to determine that the stall warning 
and stall identification systems are operating properly prior to takeoff.  This method should be 
described in the operating procedures section of the AFM. 
 
  (2) Warning that the associated systems for operating the stall warning or stall 
identification devices has failed should be provided.  As far as is practicable, this warning should 
cover all system failure modes. 
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  (3) A clear and distinctive cockpit indication should be given when the stall 
identification system has been deactivated by the flightcrew (see paragraph 228c(2)(c), above).  
This indication should be present as long as the system is deactivated. 
 
  (4) Any related limitations, and normal and emergency operating procedures, together 
with any information found necessary for safety during operation of the stall warning and 
identification systems, should be included in the AFM and supplemented by such markings and 
placards as deemed necessary. 
 
 e. System Reliability and Safety.  When stall warning and/or stall identification systems 
are installed to show compliance with the stalling requirements of §§ 25.201, 25.203, and 
25.207, engineering data should be supplied to satisfy the following criteria, determined in 
accordance with § 25.1309. 
 
  (1) Reliability.  Probability of artificial stall warning and stall identification systems 
not operating when required: 
 
   (a) If stall warning is not clearly identifiable by natural characteristics, the loss of 
artificial stall warning should be improbable (not greater than 10-5 per flight hour).  This 
reliability requirement is normally met by using dual, independent stall warning systems. 
 
   (b) If the natural stall characteristics are unacceptable, the combination of failure 
of the stall identification system to operate and entry into a stall should be extremely improbable 
(not greater than 10-9 per flight hour).  A stall identification system with a failure rate not greater 
than 10-4 per flight hour will satisfy this requirement. 
 
   (c) If the stall identification system is installed solely for the purposes of 
identifying the stall, and the stall characteristics would otherwise meet the requirements of 
Subpart B with the stall identification system disabled, a maximum failure rate of 10-3 per flight 
hour will be acceptable. 
 
  (2) Safety.  Probability of artificial stall warning and stall identification systems 
operating inadvertently. 
 
   (a) The probability of inadvertent operation of artificial stall warning systems, 
during critical phases of flight, should not be greater than 10-5 per flight hour. 
 
   (b) To ensure that inadvertent operation of the stall identification system does not 
jeopardize safe flight, and to maintain crew confidence in the system, it should be shown that: 
 
    1 No single failure will result in inadvertent operation of the stall 
identification system; and 
 
    2 The probability of inadvertent operation from all causes is improbable 
(not greater than 10-5 per flight hour). 
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   (c) Stall identification systems should be designed so that flight in turbulence will 
not result in inadvertent operation. 
 

NOTE: In making the assessments of subparagraphs (d), (e) and (f), below, it 
should be assumed that in the climb, cruise, and descent flight regimes, corrective 
pilot action will not be initiated until three seconds after unwanted operation has 
been recognized.  During takeoff and final approach, this time delay may be 
reduced to one second. 

 
   (d) If inadvertent operation of the stall identification system would result in limit 
loads being exceeded in any part of the airplane structure, the probability of inadvertent 
operation should not be greater than 10-7 per flight hour. 
 
   (e) If inadvertent operation of the stall identification system would result in 
ultimate loads being exceeded in any part of the airplane structure, the probability of inadvertent 
operation should be extremely improbable (not greater than 10-9 per flight hour). 
 
   (f) Inadvertent operation of the stall identification system should not cause 
catastrophic ground contact.  This should be achieved by limiting the effect of the stall 
identification system to that necessary for stall identification purposes, without undue flight path 
deviation (e.g., by limiting the stroke of a stick pusher).  Alternatively, if inadvertent operation 
could result in catastrophic ground contact, per § 25.1309(b)(1), the probability of inadvertent 
operation must be extremely improbable.  Inhibition of the system close to the ground (e.g., for a 
fixed time after liftoff or below a radar altitude) would not normally be an acceptable means of 
compliance with this requirement. 
 
 f. System Functional Requirements. 
 
  (1) Operation of the stall identification system should reduce the airplane’s angle-of-
attack far enough below the point for its activation that inadvertent return to the stall angle-of-
attack is unlikely. 
 
  (2) The characteristics of stall identification systems, which by design are intended to 
apply an abrupt nose-down control input (e.g., a stick pusher), should make it unlikely that a 
flightcrew member will prevent or delay its operation.  The required stick force, rate of 
application, and stick travel will depend on the airplane's stall and stick force characteristics, but 
a force of 50 to 80 pounds applied virtually instantaneously has previously been accepted as 
providing this characteristic. 
 
  (3) Normal operation of the stall identification system should not result in the total 
normal acceleration of the airplane becoming negative. 
 
  (4) The longitudinal maneuvering capability of an airplane equipped with stall 
identification systems, at all speeds likely to be encountered in normal operations, should be 
substantially the same as would be expected for an airplane with acceptable aerodynamic stall 
characteristics. 
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 g. System Tolerances.  See paragraph 29i for additional considerations regarding 
compliance with stall-related regulatory requirements, including how to address tolerances for 
stall speed (§ 25.103) and stall characteristics (§ 25.203) testing.  See paragraph 29f(2)(f) for 
how to address tolerances of the stall warning and stall identification systems during testing to 
show compliance with the stall warning requirements (§ 25.207). 
 
229. Reduced and Derated Power or Thrust Takeoff Operations. 
 
 a. Explanation.  The use of derated and reduced power or thrust for takeoff operations can 
produce substantial reductions in operating costs due to lower fuel consumption and increased 
operating margins.  With the appropriate limitations and operating procedures applied, these 
operations can also offer safety benefits.  Three methods have been approved by the FAA for 
derated and reduced power or thrust takeoff operations.  These methods are as follows: 
 
  (1) Derated power or thrust approvals entail the use of completely new takeoff power 
or thrust setting charts and AFM performance information.  The new power or thrust settings are 
less than the engine manufacturer’s approved takeoff power or thrust settings, and the AFM 
performance is based on the power or thrust developed at these new, lower power or thrust 
settings. 
 
  (2) A constant reduced power or thrust increment can be used for all operating 
conditions.  In this method the engine parameter by which power or thrust is set is reduced by a 
constant, such as an engine pressure ratio increment (EPR) of 0.02.  A method is supplied to 
determine the airplane’s takeoff performance, at this reduced power or thrust level, from the 
AFM data representative of full takeoff power or thrust. 
 
  (3) The assumed temperature method of reduced power or thrust takeoff operations 
entails using takeoff performance information determined for an “assumed” temperature above 
ambient, but not above the temperature at which the takeoff weight would be limited by the 
takeoff field length available for a particular airport runway or by FAA climb requirements.  
Engine power or thrust settings, takeoff speed schedules, takeoff field lengths, and climb 
performance are determined at the assumed temperature.  This assumed temperature method is 
the most flexible in its application and the most widely used by transport category airplane 
manufacturers and operators. 
 
 b. Procedures.  Because there is a reduction in the takeoff performance level when any of 
the derated or reduced power or thrust methods are used, the FAA has certain limitations on the 
use of these reduced power or thrust levels.  The appropriate guidance for derated and reduced 
power or thrust approvals, including limitations and procedures, is presented in AC 25-13, 
“Reduced and Derated Takeoff Thrust (Power) Procedures,” dated May 4, 1988. 
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230. Runway Gradients Greater Than ± 2 Percent. 
 
 a. Applicable Regulations.  Sections 25.105, 25.115, 25.119, 25.121, 25.125, 25.1533, and 
25.1587. 
 
 b. Explanation.  The sections of part 25, referenced above, require accounting for the 
effects of runway gradient.  Typically, performance limitations and information are determined 
for runway gradients up to ±2 percent in the AFM expansion of test data.  Though these gradient 
extremes are adequate for addressing the majority of runways, there are a number of airports 
frequented by transport category airplanes that have runway slopes greater than ±2 percent.  
Consequently, approvals have been granted for operations on runways with slopes exceeding ±2 
percent with specific testing and analysis validation for the effects of the higher slopes.  
Additional concerns, beyond runway slope effect on acceleration and braking and proper 
accounting of elevations during obstacle clearance analysis, include takeoff flare from liftoff to 
35 feet, minimum takeoff climb gradients, minimum approach and landing climb gradients, 
landing flare distances, and unique operating procedures. 
 
 c. Procedures. 
 
  (1) Takeoff Flare from Liftoff to 35 Feet.  The AFM expansion of the takeoff data 
should account for the effect of the runway slope on the portion of the takeoff distance after 
liftoff.  At climb performance-limiting thrust-to-weight ratios, the average gradient of climb will 
be on the order of 2.0 to 3.0 percent.  On a downhill runway of sufficient magnitude, the airplane 
could attain a height of 35 feet above the runway and have a positive gradient of climb relative to 
it, but its flight path may continue to descend beyond that point.  The transition from liftoff to 
climbing flight, in the sense of an ascending flight path, should be adequately addressed with 
respect to obstacle clearance analysis data. 
 
  (2) Minimum Takeoff Climb Gradients.  At limiting thrust-to-weight ratios, the 
transition to free air (i.e., out of ground effect) takeoff climb could result in steep uphill runways 
rising faster than the airplane’s ability to climb.  The minimum second segment takeoff climb 
gradient should maintain the same margin, relative to the increased maximum uphill runway 
slope, that exists between the minimum gradient specified in § 25.121 and a two percent uphill 
runway. 
 
  (3) Minimum Approach and Landing Climb Gradients.  Balked landing go-arounds, at 
climb limited landing weights, could also result in an uphill runway rising faster than the 
airplane’s ability to climb.  The minimum approach and landing climb gradients should maintain 
the same margins, relative to the increased maximum uphill runway slope, that exist between the 
minimum gradients specified in §§ 25.119 and 25.121 and a two percent uphill runway. 
 
  (4) Landing Technique and Distance.  Final approaches to steep uphill runways will 
require early flare initiation, to avoid hard landings, and landing flare air distances will be 
increased for approaches to steep downhill runways using normal approach descent angles.  The 
AFM operating procedures should describe any special piloting technique required for landing 
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on steep runways.  The AFM expansion of landing distances should account for the effect of 
runway gradient, including any expected increase in flare distances, from 50 feet to touchdown, 
for steep downhill runways.   
 
  (5) Operating Procedures.  Operating procedures should be provided in the AFM for 
operations on runways with gradients greater than ± 2 percent.  Guidance should be provided on 
takeoff rotation and landing flare techniques. 
 
  (6) Operational Considerations.  For runway slopes greater than ± 3 percent, the 
specific airport(s) should be investigated relative to runway lengths and surrounding terrain and 
obstacles.  Airport-specific operating limitations may be necessary, such as:  direction of takeoff 
and landing, takeoff flap restrictions, prohibition of overspeed takeoffs on downhill runways, 
requirement for the antiskid system to be operative and on, and restrictions on engine bleed air 
and power extraction. 
 
  (7) Flight Test Requirements.  For approval of certification data for runway slopes 
exceeding ± 3 percent, operational flight tests should be conducted to verify the proposed 
procedures and performance information. 
 
231. Criteria For Approval Of Steep Approach To Landing. 
 
 a. Applicable Regulations.  Sections 25.119, 25.121, 25.125, and 25.143. 
 
 b. Explanation. 
 
  (1) Airworthiness Approval.  The standard approach angle assumed as part of the type 
certification of transport category airplanes is 3 degrees, which coincides with the nominal ILS 
approach angle.  Those evaluations are considered adequate to address approach angles of less 
than 4.5 degrees.  The criteria listed below represent FAA policy for airworthiness approval of 
steep approach landing capability using an approach angle of 4.5 degrees or more.  Additions or 
deletions to these criteria may be needed to address specific design features.  It should be noted 
in the AFM that the presentation of the steep approach limitations, procedures, and performance 
information reflects the capability of the airplane to perform steep approaches, but does not 
constitute operational approval. 
 
  (2) Operational Approval.  Operational approval to conduct steep approaches in the 
United States is the exclusive responsibility of FAA Flight Standards Service, and cannot be 
delegated to FAA Aircraft Certification Service employees, designees, or to foreign civil 
aviation authorities.  FAA Flight Standards Service has assigned this responsibility to the Flight 
Standardization Board (FSB) with oversight for the airplane type in question.  Operational 
approval will, in part, be based on the results of the airworthiness testing described in this 
section.  Additional testing, for operational concerns, may be combined with the airworthiness 
testing.  Ideally, the testing for operational approval would be conducted by the Flight 
Standardization Board during the test program for airworthiness certification of steep approach 
capability.  
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 c. General Criteria. 
 
  (1) If approval is sought to conduct steep approaches in icing conditions, compliance 
with the part 25 requirements applicable to steep approach operations identified below should 
also be shown for icing conditions. 
 
  (2) The following criteria apply when showing compliance with § 25.125 for steep 
approaches: 
 

  (a) The airplane should be in the landing configuration used for steep approaches. 
 
   (b) Compliance with the requirement that a stable approach be conducted to a 
height of 50 feet with a speed not less than VREF (§ 25.125(b)(2)) should be shown with an 
approach path angle not exceeding the maximum for which approval is sought.  The VREF used 
for steep approaches may be different than the VREF used for normal approaches.   
 
   (c) If the parametric method of determining the landing distance is used (see 
paragraph 19b(3) of this AC), approach angles should be appropriate to the steep approach path 
angle desired, and the touchdown sink rate for data expansion should be limited to 6 feet per 
second. 
 
  (3) The landing distance established under § 25.125(a) begins at a point 50 feet above 
the landing surface.  If an applicant proposes to use a different height for the beginning of the 
steep approach landing distance, this must be done through an equivalent level of safety finding, 
in accordance with § 21.21(b)(1), or an exemption, in accordance with part 11.  This has been 
done in some steep approach certifications to take advantage of precision approach guidance at 
an airport that guides the airplane to a height over the runway threshold of less than 50 feet. 
 
  (4) Compliance with §§ 25.119 and 25.121(d) should be shown using the 
configurations and speeds established for steep approach operations. 
  
 d. Test Conditions For Reasonably Expected Variations In Approach Speed and Path 
Angle. 
 
  (1) The following additional criteria should be applied to show that the airplane is 
safely controllable and maneuverable during landing (§ 25.143(a)(5)).  
 
   (a) Under calm air conditions, demonstrate that it is possible to complete an 
approach, touchdown, and stop without displaying any hazardous characteristics in the following 
conditions: 
 
    1 An approach path angle 2 degrees steeper than the steepest approach path 
angle for which approval is sought at the VREF established for a steep approach; and  
 
    2 The steepest approach path angle for which approval is sought at a speed 5 
knots lower than the VREF established for a steep approach.  
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   (b) For both conditions above:  
 
    1 The airplane should be loaded to the most critical weight and c.g. 
combination;  
    2 The airplane should be in the steep approach configuration;  
 
    3 The rate of descent should be reduced to no more than 3 feet per second at 
touchdown;  
 
    4 Below a height of 200 feet, no action should be taken by the pilot to 
increase power or thrust, apart from those small changes needed to maintain an accurate 
approach;  
 
    5 After initiating the flare, the longitudinal control should not be used to 
depress the nose apart from those small changes necessary to maintain a continuous and 
consistent flare flight path;  
 
    6 The flare, touchdown, and landing should not require exceptional piloting 
skill, alertness, or strength; and 
 
    7 To ensure adequate capability for a go-around or down path adjustment, 
the engines should remain above flight idle power or thrust when stabilized on the approach 
path.  
 

NOTE: The 2 degrees steeper approach path angle demonstration is to account 
for tailwinds on the approach and to take into account necessary corrections back 
to the desired approach path after inadvertent excursions.  The purpose of the test 
at VREF minus 5 knots is to account for an unnoticed speed decrease during the 
approach, hence the requirement in paragraph 231d(1)(b)4 for no power or thrust 
increase to account for the slower speed. 

 
   (c) For flight test safety reasons, when conducting the 2 degrees steeper approach 
path angle test condition of paragraph 231d(1)(a)1, the pilot may begin to flare the airplane (or 
reduce the approach angle) at a reasonable height somewhat higher than the normal steep 
approach flare height.  If this is done, it should be shown by analysis that there is sufficient pitch 
control to arrest the descent rate if the flare were to be initiated at the normal steep approach 
flare height, keeping in mind the criteria in paragraphs 231d(1)(b)3 and 6. 
 
  (2) Compliance with § 25.143(b)(1) should be assessed as follows:  Demonstrate that 
the airplane can both safely land and safely transition to a go-around following a failure of the 
critical engine at any point in the approach under the following conditions: 
 
   (a) The steepest approach angle for which approval is sought; 
 
   (b) The VREF established for a steep approach; and 
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   (c) The most critical combination of weight and c.g.; and 
 
   (d) For propeller powered airplanes, the propeller of the inoperative engine should 
be in the position it would normally assume without any action taken by the pilot following an 
engine failure. 
 
  (3)  The height loss experienced during the maneuver described in paragraph 231d(2) 
should be determined. 
 
 e. One-Engine-Inoperative Steep Approach. 
 
  (1) If approval is sought for one-engine inoperative steep approach capability, the 
following criteria should be met at the most critical weight and c.g. position, using the 
configuration and speed established for a one-engine-inoperative steep approach: 
 

  (a) The demonstrations identified in paragraph 231d(1) above; and 
 
   (b) Demonstrate that the airplane can safely transition to a go-around 
during a one-engine inoperative steep approach. 
 
 f. Airplane Flight Manual. 
 
  (1) In accordance with §§ 25.1581, 25.1583, 25.1585, and 25.1587, the following 
information must be provided in the AFM: 
 
   (a) Limitations, operating procedures, and performance information necessary for 
steep approach operations, including the configuration(s), speeds and flight path angle(s) 
approved for conducting a steep approach; and 
 
   (b) Operating limitations prohibiting initiation of a steep approach: 
 
    1 With one engine inoperative, unless the airplane is approved for one-
engine inoperative steep approaches; and 
 
    2 In forecast or known icing conditions unless the airplane is approved for 
conducting steep approaches in icing conditions. 
 
   (c) A statement in the limitations section that the steep approach limitations, 
procedures, and performance information reflect the capability of the airplane to perform a steep 
approach, but do not constitute operational approval to conduct steep approach operations. 
 
   (d) The height loss determined in accordance with paragraph 231d(3). 
 
232. Takeoff and Landing On Unpaved Runways.  
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 a. Explanation.  There are no specific regulatory requirements or established guidance 
material pertaining to transport category airplane airworthiness certification for operations on 
runway surfaces other than smooth and hard.  However, several transport category airplanes 
have been certificated by the FAA for operation on various kinds of unpaved runways, including 
sod, dirt, and gravel.  The following general guidance for airplane certification, for operation on 
unpaved surfaces, reflects the experience and policy developed during those certification 
programs. 
 
 b. Procedures.  The considerations described in paragraphs (1) through (6), below, should 
be addressed in obtaining approval for operation of transport category airplanes on unpaved 
runways. 
 
  (1) Surface Definition.  Each type of surface should be defined so that it can be 
recognized, controlled, and maintained in service.  The definition should include specification 
characteristics of the surface necessary for safe operation, such as: 
 
   (a)  Surface and sub-base bearing strength, usually expressed in terms of 
California bearing ratio (CBR).  Measurements wet and dry every 500 feet along the runway 
centerline and 15 to 30 feet either side of the centerline have been used.  Other means of defining 
the suitability of a runway surface to the operation of a particular airplane exist that classify 
runways based on their load bearing capability; one example is the Aircraft Classification 
Number (ACN) employed by the International Civil Aviation Organization (ICAO). 
 
   (b) Thickness, aggregate size, and depth of the surface material. 
 
   (c) Presence of rutting. 
 
   (d) Drainage. 
 
   (e) Presence of surface vegetation. 
 
  (2) Airplane Performance.  If special equipment (e.g., low pressure tires, shields, 
deflectors) or special procedures are required, the effect of such equipment and/or procedures on 
airplane performance should be determined and presented in the AFM; for example, landing gear 
retraction time may increase if deflectors are installed on the landing gear, necessitating changes 
to AFM first segment climb data. 
 
   (a) Takeoff, accelerate-stop, and landing performance should be demonstrated and 
scheduled in accordance with the appropriate airworthiness requirements based on each type of 
unpaved runway surface for which approval is requested.  The flight test demonstrations should 
be conducted on both wet and dry surfaces.  An abbreviated series of test conditions, relative to 
the test requirements of a conventional smooth, hard-surface runway test program, may be 
acceptable if reliable adjustments for all flap settings can be established to derive these data from 
the smooth, hard surface performance data.  However, a minimum of four conditions each for 
takeoff, accelerate-stop, and landing should be conducted, and the heaviest weight demonstrated 
for takeoff and landing will establish the weight limitations for those modes of operation. 
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   (b) The test runway should be the actual runway for which approval is requested 
or be chosen to represent the worst characteristics (i.e., high rolling friction, low braking friction, 
etc.) of each type of unpaved runway for which approval is sought.  In this regard, it may not be 
sufficient to conduct these tests from a runway with a low CBR.  Previous tests have shown that 
rolling friction is primarily a function of CBR, but braking friction is primarily a function of 
runway surface characteristics and largely independent of CBR and, in some cases, whether the 
surface is wet or dry.  The effects of other variables such as airplane weight and tolerances on 
recommended tire pressure should also be determined. 
 
   (c) A VMCG demonstration should be conducted.  Rudder pedal nose wheel 
steering may be used, provided the runway surface for the test represents the worst case 
anticipated for operation.  The aerodynamic moment applied to the airplane by the rudder, 
combined with the use of rudder pedal nose wheel steering, may result in the nose wheel plowing 
the unpaved runway surface.  This can result in the runway surface elements impacting critical 
airframe and powerplant surfaces.  The test should be closely monitored to ensure this damage 
source does not exist.  If the test is conducted with rudder pedal nose wheel steering:  
 
    1  Credit may be taken for any performance benefit provided; and 
 
    2  Dispatch without it is prohibited, regardless of whether credit for any 
performance benefit is taken. 
 
   (d) Landing flare and touchdown characteristics should be evaluated during the 
landing performance tests. 
 
   (e) Climb performance should account for any additional drag or power/thrust 
loss due to special equipment installations. 
 
  (3) Airplane Handling.  Airplane handling characteristics must meet the appropriate 
airworthiness requirements in each configuration specified for operation.  Any special 
procedures or techniques associated with unpaved runway operation, such as use of thrust 
reversers, brakes, nose wheel steering, etc., should be identified. 
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  (4) Systems, Engine, and Structure. 
 
   (a) It should be demonstrated that systems whose normal functions may be 
affected by operation from unpaved runways (e.g., anti-skid, nose wheel steering) continue to 
perform their intended function under all conditions for which approval is requested. 
 
   (b)  It should be determined that the airplane can be operated on each defined 
surface without hazard from likely impingement or engine ingestion of gravel or other surface 
material.  In demonstrating that there is no hazard, consideration should be given to immediate 
effects such as mechanical damage, and to longer term effects, such as accumulation of loose 
runway material.  These accumulations could cause jamming of flight controls, prevent 
configuration changes, or cause blockage of cooling ducts or drains.  Also, sandblasting effects, 
from materials thrown by the tires, on the wings, propellers, and fuselage may result in surface 
erosion that, in time, may lead to more serious structural damage.  To address these concerns, the 
test airplane, its engines, and any relevant systems should be inspected for surface damage after 
each accelerate-stop test and each takeoff/landing cycle. 
 
   (c)  The effect on landing gear fatigue life, due to operation on unpaved runway 
surfaces, should be determined. 
 
   (d)  It should be demonstrated that any special equipment, such as gravel deflectors 
or low pressure tires, does not adversely affect any of the AFM performance or ground handling 
characteristics previously established for the airplane on hard surface runways (e.g., water spray 
ingestion characteristics of the airplane). 
 
  (5) Maintenance. 
 
   (a) Any revised airplane maintenance procedures, such as increased frequency of 
inspections considered necessary to ensure safe operation of the airplane, should be determined 
and scheduled. 
 
   (b) Runway maintenance procedures specific to the unpaved surface should be 
determined and scheduled (e.g., grading and sanding at, and just beyond, the touchdown point, 
and in the area where takeoff power or thrust is set, if those areas may be contaminated with ice 
or compact snow). 
 
  (6) Airplane Flight Manual.  The limitations, procedures, and performance information 
for unpaved runway operation should be presented in an AFM appendix or supplement. 
 
   (a) The limitations section should include runway surface definitions as 
established under paragraph (1) above, for which the airplane has been approved to operate and 
for which suitable performance data has been determined and scheduled in accordance with 
paragraph (2) above.  Approved airplane configurations, including any special equipment 
required, along with system limitations, should also be included.  The following takeoff and 
landing limitations should be stated: 
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    1 Reduced power or thrust takeoffs are prohibited. 
 
    2 Dispatch with an inoperative antiskid system is prohibited. 
 
    3 Dispatch with inoperative spoilers/lift dumpers is prohibited. 
 
    4 Use of continuous ignition is required during the takeoff.  
 
   (b) The procedures section should include any special procedures (e.g., use of 
thrust reversers, nose wheel steering, rolling takeoff, air conditioning/pressurization 
configuration). 
 
   (c) The performance section should include the performance determined and 
approved under paragraph (2) above, accounting for any special procedures required.  No credit 
for clearway and/or stopway should be allowed. 
 
233. Accounting for Performance Effects of Minor Design Changes and Configuration 
Deviation List (CDL) Items. 
  
  a. Explanation.  Minor changes to the type design that involve changes to the exterior of 
the airplane (e.g., installation of wing tip-mounted emblem lights) and configuration deviation 
list (CDL) items (e.g., missing flap hinge covers) have aerodynamic effects and therefore can 
adversely affect airplane performance.  These effects should be assessed and performance 
decrements identified as applicable. 
 
 b. Procedures.  The methods described below have been found acceptable for assessing the 
performance decrement that should be applied. These methods are considered as being a 
conservative alternative to a complete flight test analysis. 
 
  (1) Analytically assess the performance degradation of an aerodynamic configuration 
change by estimating the drag value and then doubling that value.  The resulting degradations in 
takeoff performance, en route climb, and approach/landing climb capability should be 
determined in terms of airplane weight.  For airplanes with maximum takeoff gross weights not 
exceeding 20,000 lbs., performance weight decrements less than 0.5 percent of maximum takeoff 
weight for the takeoff and en route cases (or 0.5 percent of maximum landing weight for the 
approach/landing climb cases) may be considered negligible.  For airplanes with maximum 
takeoff gross weights greater than 20,000 lbs., performance weight decrements of 100 lbs. or less 
may be considered negligible.  The AFM supplement or CDL appendix should identify those 
type design changes or CDL items that result in a negligible performance degradation.  If the 
performance degradation is not considered negligible, the appropriate performance penalty (in 
terms of a weight and/or climb gradient capability, as appropriate) should be provided.  For 
design changes, this information should be provided as a limitation in the AFM supplement.  For 
CDL items, this information should be provided in the CDL appendix, along with the 
information described under “General Limitations” in paragraph 234 of this AC.  
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  (2) An alternative method of analytically assessing the performance degradation is to 
implement conservatism throughout the analysis through conservative round offs and chart 
readings, using worst-case assumptions, etc.  The performance weight decrements are then 
implemented as noted in paragraph (1), above. 
 
234. Configuration Deviation List. 
 
 a. Explanation.  The parts and/or combinations of parts permitted to be missing, and the 
associated performance decrements and other limitations, must be determined and presented in 
the AFM CDL. 
 
 b. Procedures.   
 
  (1)   The effect of the missing part should be evaluated to determine if an airplane 
performance decrement and/or other limitation(s) must be applied to ensure that there is no 
safety effect.  A missing part that affects structural safety, results in damage to other parts, or 
causes the loss of required safety features is ineligible to be included in the CDL.  For example, 
access panels that, if missing, could affect fire detection, extinguishing, and containment 
characteristics, are not eligible for listing as CDL items. 
 
  (2) Performance decrements should be computed as described in paragraph 233 of this 
AC.  A single decrement applicable to all AFM performance limitations may be presented; or, 
subject to the following restrictions, performance decrements may be presented for different 
flight phases: 
 
   (a) Only a single performance decrement for takeoff and a single performance 
decrement for landing will be permitted.  For takeoff, the decrement should be the greatest 
decrement considering takeoff field length, first, second, and final segment climbs, and takeoff 
flight path.  For landing, the decrement should be the greatest decrement considering approach 
climb, landing climb, and landing field length. 
 
   (b) Only a single weight decrement for the one-engine-inoperative and two-
engine-inoperative en route climb performance will be permitted. 
 
   (c) The CDL should contain explanations of the takeoff performance decrement, 
the landing performance decrement, and the en route performance decrement, as appropriate for 
the airplane, when the three decrements are used. 
 
  (3) No reduction in VMO/MMO will be needed if it can be shown by flight test that: (1) 
no significant changes of flight characteristics or other adverse airworthiness effects exist up to 
VMO/MMO and (2) a rational analysis is made for speeds up to VD/MD to show no deterioration of 
airplane control characteristics.  The rational analysis should be based primarily on the proximity 
of the missing part to aerodynamic surfaces.  If a reduction in VMO/MMO is needed, the maximum 
allowable airspeed indicator and aural warning, required by § 25.1303(b)(1) and (c)(1), must be 
rescheduled for the reduced speed. 
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 c. General Limitations.  The following information should be presented in the CDL 
appendix: 
 
  (1)  When the airplane is operated using the CDL, it must be operated in accordance 
with the limitations specified in the AFM, as amended in the CDL. 
 
  (2)  Any associated operating limitations (e.g., speed, altitude, or performance 
limitations) should be listed on a placard affixed in the cockpit in clear view of the pilot in 
command and other appropriate crewmember(s). 
 
  (3)  For operations using a dispatch or flight release not prepared by the pilot in 
command, the pilot in command should be notified of each operation with a missing part(s) by 
listing the missing part(s) in the flight or dispatch release. 
 
  (4)  The operator should list in the airplane logbook an appropriate notation covering the 
missing part(s) on each flight. 
 
  (5)  If an additional part is lost in flight, the airplane may not depart the airport at which 
it landed following this event, until it again complies with the limitations of the CDL.  This, of 
course, does not preclude the issuance of a ferry permit to allow the airplane to be flown to a 
point where the necessary repairs or replacements can be made. 
 
  (6)  No more than one part for any one system (e.g., one engine pylon fairing) may be 
missing, unless specific combinations of parts are included in the CDL.  Unless otherwise 
specified, parts from different systems may be missing.  The performance penalties are 
cumulative, unless specifically designated penalties are indicated for the combination of missing 
parts. 
 
  (7)  No more than three parts that have each been determined to cause a negligible 
performance degradation may be missing for takeoff without applying a performance penalty.  
When more than three such parts are missing, a performance penalty of either 0.5 percent of the 
maximum takeoff weight or 100 pounds, whichever is less, should be applied for takeoff, en 
route, and landing for each missing part. 
 
  (8)  Takeoff performance penalties should be applied to the takeoff weights that are 
limited by performance considerations (i.e., takeoff field length, first, second, or final segment 
climb, or takeoff flight path).  If the performance-limited takeoff weight is greater than the 
maximum certified takeoff weight, the takeoff performance penalties should be applied to the 
maximum certified takeoff weight to ensure compliance with the noise requirements. 
 
  (9)  Landing performance penalties should be applied to the landing weights that are 
limited by performance considerations (i.e., landing field length, landing climb, or approach 
climb).  If the performance-limited landing weight is greater than the maximum certified landing 
weight, the landing performance penalties should be applied to the maximum certified landing 
weight to ensure compliance with the noise requirements. 
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  (10)  En route performance penalties apply only to operations that are limited by the 
one- or two-engine(s) inoperative en route climb performance. 
 
  (11)  The numbering and designation of systems in the CDL appendix should be based 
on an Air Transport Association (ATA) Specification.  The parts within each system should be 
identified by functional description and, when necessary, by part numbers. 
 
235. Spare Engine Pod.  
 
 a. Explanation.  When a spare engine pod is installed, this is considered a major change to 
the type design.  The airplane’s performance and flight characteristics that are affected by the 
installation should be evaluated as part of the approval process required by § 21.97(a)(2). 
 
 b. Procedures.  The drag increment due to the spare engine pod installation is normally 
determined by the drag polar method described in paragraph 17b(1)(b) of this AC.  Check climbs 
are performed to verify the performance penalties derived from the drag data.  These check 
climbs will normally be conducted in the airplane configuration corresponding to the limiting 
takeoff performance segment.  Performance stalls should be conducted for a minimum of one 
takeoff and one landing flap setting to determine any effect of the spare engine pod installation 
on stall speeds and handling characteristics in the stalling maneuver.  Vibration and buffeting 
(§ 25.251), flutter (§ 25.629), and the maximum operating limit speed (§ 25.1505) may also 
require flight demonstration with the spare engine and pod installed.  Longitudinal control 
(§ 25.145), directional and lateral control (§ 25.147), and ability to trim (§ 25.161) should be 
demonstrated with the spare engine and pod installed. 
 
236. Authorization For Ferry Flight With One Engine Inoperative - § 91.611.  
 
 a. Explanation.  Section 91.611 provides an allowance for the ferry flight of “a four-engine 
airplane or a turbine-engine-powered airplane equipped with three engines, with one engine 
inoperative, to a base for the purpose of repairing that engine...”  This allowance is provided for 
airplanes operated in accordance with parts 121 and 125.  Section 91.611 also provides 
performance and operating criteria, including references to sections of part 25 that must be met 
in order to obtain a one-engine-inoperative ferry flight permit.  
 
 b. Procedures.  Section 91.611(a)(1) requires the subject airplane be flight tested to show 
satisfactory compliance with the requirements of § 91.611(b) or (c) for reciprocating and turbine 
engine powered airplanes, respectively.  Deviations from the flight tested configuration may be 
approved, based on a conservative analysis as described in paragraph 233 of this AC.  An 
example of such a deviation would be a turbojet powered airplane with a one-engine-inoperative 
ferry flight approval, based on a flight test with the inoperative engine windmilling being 
subsequently approved for flight with a locked rotor.  Though the one-engine-inoperative ferry is 
an operational approval and not a change in the type design, the airplane performance with the 
locked rotor should be treated in the same manner as a “minor design change,” and the 
associated drag increment computed conservatively as described in paragraph 233.  The 
pertinent regulatory sections are described below. 
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  (1) Section 91.611(a)(2) requires the approved AFM to contain limitations, operating 
procedures, and performance information, including a description of the configuration of the 
inoperative propeller (i.e., engine). 
 
  (2) Section 91.611(c)(1) and (2) require flight tests to be conducted, in the propeller 
(i.e., engine) configuration desired for approval, to determine takeoff speeds and distances for 
one-engine-inoperative ferry operations. 
 
  (3) Section 91.611(c) refers to the general performance requirements of § 25.101, the 
takeoff speed requirements of § 25.107, and the climb requirements of § 25.121, thus tying the 
one engine inoperative ferry performance to the type design criteria. 
 
  (4) Section 91.611(c)(5) states the airplane must be satisfactorily controllable in a 
climb with two critical engines inoperative and the climb performance “may be shown by 
calculations based on, and equal in accuracy to, the results of testing.” 
 
  (5) Section 25.21(a)(1), “Proof of Compliance,” states the same allowance for 
calculated performance if it is “based on, and equal in accuracy to, the results of testing.”  Based 
on this statement, and the previously noted references of § 91.611 to sections of part 25, it is 
permissible to calculate one-engine-inoperative ferry performance for a configuration that differs 
from that flight tested.  In such cases the conservative methods described in paragraph 233 of 
this AC should be used. 
 
237. Instrument Landing System Weather Minima. 
 
 a. Explanation.  The all weather categories, as presented by the ICAO, are defined as 
follows: 
 
  (1) Category I - 200 feet (60 meters) ceiling, 2600 feet (800 meters) runway visual 
range (RVR). 
 
  (2) Category II - 100 feet (30 meters) ceiling, 1200 feet (400 meters) RVR. 
 
  (3) Category III. 
 
   (a) Category IIIA - No decision height, 700 feet (200 meters) RVR. 
 
   (b) Category IIIB - No decision height, no external reference and 150 feet (50 
meters) RVR. 
 
   (c) Category IIIC - No decision height, no external reference for landing or taxi. 
 
 b. Procedures.  The criteria for airworthiness certification of Category I and II all weather 
operations are contained in AC 20-129A, “Criteria for Approval of Category I and Category II 
Weather Minima for Approach,” dated August 12, 2002.  The criteria for airworthiness 
certification of Category III all weather operations are contained in AC 20-128D, “Criteria for 
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Approval of Category III Weather Minima for Takeoff, Landing, and Rollout,” dated July 13, 
1999. 
 
238. Takeoff Performance Credit for Alternate Forward Center Of Gravity Limits. 
 
 a. Applicable Regulations.  Sections 25.23, 25.103, 25.105, 25.107, 25.109, 25.111, 
25.113, 25.115, and 25.121. 
  
 b. Explanation. 
 
  (1) In the early 1970’s, approvals were granted for one alternate forward c.g. (c.g.) 
limit per manufacturer’s airplane model (e.g., DC-10 Series 40, B737-300, A300-600, etc.).  
These approvals included AFM performance information that took credit for the improved 
takeoff performance available with a further aft forward c.g. limit.  The effect of this was that all 
operators of a particular airplane model (e.g., B737-300) would have the same alternate forward 
c.g. limit, which may or may not be useable by any particular operator, depending on that 
operator’s interior configuration, loading, and route structure. 
 
  (2) Since those early approvals, the commercial aviation market has changed 
considerably, with many transport category airplanes capable of fulfilling more than one mission 
requirement in an operator’s fleet.  This is particularly true for modern extended range operation 
two-engine airplanes, most of which were derived from an earlier medium range version of the 
same airplane type.  When these airplanes are used in long range operations, the c.g. can be 
considerably aft of the forward limit due to large fuel loadings.  The advent of integral horizontal 
stabilizer fuel tanks has also led to a further shift aft of the c.g..  Some operators use these same 
long range airplanes on short to medium length routes, with the c.g. further forward than that of 
the long range operations, but still significantly aft of the forward c.g. limit.  
 
  (3) The operational flexibility of many of today’s transport category airplanes can be 
enhanced by taking credit for the improvements in takeoff performance afforded by a c.g. that is 
aft of the forward limit.  The reductions in stall speeds and airplane drag result in increased 
takeoff weights for a given field length and takeoff flight path profile.  The approval of takeoff 
performance for two alternate forward c.g. limits would provide operators with increased 
flexibility in operating the same airplane model on both long and short to medium range routes. 
 
  (4) The concept of having alternate forward c.g. limits, with associated improvements 
in takeoff performance, does not conflict with any of the airworthiness or operational 
requirements of the federal aviation regulations.  Section 25.103(b)(5) requires stall speeds to be 
based on the c.g. position that results in the highest value of reference stall speed.  Section 
25.117 states that compliance with the climb performance requirements must be shown with the 
“most unfavorable c.g.” position.  Historically, this has been interpreted as a requirement to 
conduct the associated performance flight testing at the most forward c.g. limit, and present the 
resulting AFM performance for that same extreme forward c.g. limit.  However, there is no 
requirement that prevents operating limitations from being used to establish multiple forward 
c.g. limits. 
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  (5) The primary concern in granting performance credit for forward c.g. limits that are 
aft of the extreme forward limit, is the reduction in the conservative performance margin that 
results from usually operating with the c.g. aft of the extreme forward limit that the takeoff 
performance is based on.  With the availability of alternate forward c.g. limits, this safety margin 
will be decreased, and on a statistical basis, completely eliminated more often.  Consequently, 
emphasis should be put on maintaining accurate weight and balance records, implementing 
accurate loading plans, and providing the necessary training and operating procedures for ground 
and dispatch personnel. 
 
  (6) Flight crew training is also a concern for alternate forward c.g. limit operations.  
With many of today’s transport category airplanes incorporating high levels of cockpit 
automation, it is important that the flightcrew be aware of when an alternate forward c.g. limit is 
being used as the basis for computing takeoff performance data.  This is most important when an 
alternate forward c.g. limit is used in conducting a performance-limited takeoff.   
 
 c. Procedures.  Approval may be granted for as many as two alternate forward c.g. limits 
(for a total of three forward c.g. limits), with associated takeoff performance data, using the 
following certification criteria: 
 
  (1) No more than two alternate forward c.g. limits (three total) should be approved per 
operator-specific variant of a particular airplane type and model.  “Airplane type” refers to those 
airplanes of similar design as identified on the type certificate; “airplane model” refers to 
different versions of an airplane type as reflected on the type certificate.  An “operator specific 
variant” is an airplane type and model outfitted to a particular customer’s requirements (e.g., 
engine type, seat pitch, galley locations, etc.).  For control purposes, airplanes that are classified 
as an “operator specific variant” should be clearly identifiable as such; this can be accomplished 
by definitive AFM document numbering systems and AFM’s tied to specific airplane serial 
numbers. 
 
  (2) The alternate forward c.g. limits should be sufficiently different that they will be 
treated as discrete limits and not result in confusion when determining takeoff performance 
adjustments. 
 
  (3) The c.g. range that results from the use of an alternate forward c.g. limit should be 
of sufficient magnitude to be practical and allow for expected variations in operational loading. 
 
  (4) The alternate forward c.g. limits should be identified as such and presented on the 
weight and c.g. chart in the limitations section of the basic AFM.  That chart should also provide 
a reference to a separate appendix to the AFM that contains the related airplane performance 
adjustments. 
 
  (5) To minimize the impact on crew training and standardization of cockpit 
procedures, onboard systems that use or provide weight and balance information (e.g., Flight 
Management Systems, Electronic Flight Bags, etc.) should include the performance and fuel 
management data associated with the alternate forward c.g. limits.  If they do not include such 
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information, a limitation should be added to the AFM that prohibits the use of such systems 
when using an alternate forward c.g. limit. 
 
  (6) The AFM performance associated with alternate forward c.g. limit operations must 
be substantiated by flight test data per § 25.21(a)(2).  This does not mean that flight test data 
needs to be obtained at every alternate forward c.g. limit; the intent is for the applicant to verify 
the analytical predictions of c.g. effect with flight test data collected at different c.g.’s. 
 
  (7) All affected cockpit placards and displays should be revised to reflect the alternate 
forward c.g. limits. 
 
239. Airplane Backing Using Reverse Thrust. 
 
 a. Explanation.  Where compliance with applicable airworthiness requirements has been 
demonstrated, operational approval has been granted for the use of reverse thrust to back 
airplanes away from airport gates in lieu of a tug pushback.  The applicable airworthiness 
requirements are prescribed in paragraph b, below.  Note that compliance with these 
requirements only demonstrates the capability of the airplane, and does not constitute operational 
approval.  Operational approval should be coordinated with the applicable FAA Flight Standards 
office. 
 
 b. Procedures.  To obtain airworthiness approval for reverse thrust backing, compliance 
should be demonstrated with the criteria prescribed below.  Since operational approvals for 
reverse thrust backing specify the applicable airplanes, airports, and gates, some of these tests 
will be site specific and should be coordinated with the applicable FAA Flight Standards office. 
 
  (1) Both the airplane and engine manufacturer should determine the applicability of the 
maneuver and provide appropriate limitations for the procedure.  These limitations should 
include: 
 
   (a) Engine power or thrust setting and operating parameter limits; 

   (b) Minimum and maximum allowable weights; 

   (c) C.g. limits; 

   (d) Ramp slope limits; 

   (e) Use of wheel brakes; 

   (f) Atmospheric conditions (see NOTE below); and  

   (g) Any other factor unique to the proposed operation. 

 
NOTE: The use of reverse thrust backing with snow, ice, or slush on the ramp, or 
during periods of heavy rain, is not considered good operating practice. 
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  (2) All limitations, and any normal or abnormal operating procedures, associated with 
reverse thrust backing should be included in the AFM.  Any procedures related to ground crew 
functions should also be included in the AFM. 
 
  (3) Testing should be conducted to verify that the reverser efflux does not have a 
detrimental effect on the powerplant installations.  Items to be considered include: 
 
   (a) Foreign object damage (FOD); 

   (b) Effects on engine cooling; 

   (c) Inlet flow distortion; 

   (d) Re-ingestion of exhaust gases; and 

   (e) Any effects on engine mounted accessories. 

 
  (4) Testing should be conducted to verify that the reverser efflux does not have a 
detrimental effect on other airplane systems such as air conditioning system inlets, APU inlets 
and exhausts, overboard drains, etc. 
 
  (5) It should be verified that cockpit and cabin air will not be contaminated. 
 

NOTE:  It is acceptable to have a limitation prohibiting the operation of the air 
conditioning packs during reverse thrust backing to avoid cockpit and cabin air 
contamination. 

 
  (6) Reverse thrust backing demonstrations should be conducted to evaluate the 
associated procedures.  These demonstrations should be conducted at: 
 
   (a) Maximum ramp weight with the c.g. at the aft limit, and 
 
   (b) Any other weight that may be critical with the c.g. at the aft limit. 
 
  (7) The reverse thrust backing demonstrations of paragraph (6), above, should be 
evaluated to determine: 
 
   (a) The amount of aft pitching moment, including its effect on nose wheel 
steering; 
 
   (b) The effect of inadvertent heavy/emergency braking action; 
 
   (c) Adequate cockpit visibility and ground crew function; 
 
   (d) An area around the airplane that should be free of ground crew personnel and 
ground support equipment throughout the reverse backing maneuver.  (This evaluation should 
also consider the effects of the reverser efflux on airplanes at adjacent gates.); 
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   (e) The adequacy of procedures for transitioning from reverse to forward thrust; 
 
   (f) The effect of thrust asymmetry due to failure of an engine to enter reverse, or 
recover forward thrust mode; 
 
   (g) The effects of low tire pressures; 
 
   (h)  The effect of ramp slope and surface condition; 
 
   (i)  The effects of ambient atmospheric temperature; and 
 
   (j) The effect of flap/slat configuration. 
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Appendix 1 
 

Acronyms, Abbreviations, Symbols, and Definitions 
 

Acronym/  Definition 
Abbreviation 
 
AC     advisory circular 

ACARS    aircraft communications addressing and reporting system 

ACO    aircraft certification office 

ACN    aircraft classification number 

ADC    air data computer  

ADF    automatic direction finder 

ADQ    adequate 

AEO    all-engines-operating 

AFM    airplane flight manual 

AGL    above ground level 

AHRS    attitude and heading reference system 

AOA    angle of attack 

APU    auxiliary power unit 

AR     authorization required 

ARSR    air route surveillance radar 

ARTCC    air route traffic control center 

ASR    airport surveillance radar 

ATA    Air Transport Association 

ATC    air traffic control 

ATCRBS   air traffic control radar beacon system 

ATS     automatic throttle system 

ATT REF   attitude reference 

ATTCS    automatic takeoff thrust control system 

C    Celsius 

CAR    civil air regulations 

CAS    calibrated airspeed 
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CAT    category 

CAWS    central aural warning system 

CBR    California bearing ratio 

CDL    configuration deviation list 

CDU    cockpit display unit 

CFR     Code of Federal Regulations 

c.g.     center of gravity 

CL     lift coefficient 

CMM    component maintenance manual 

CN     yawing moment coefficient 

COM    communications 

CON    controllable 

CRT    cathode ray tube 

CVR    cockpit voice recorder 

CWS    control wheel steering 

dB     decibel 

DER    designated engineering representative 

DFDR    digital flight data recorder 

DG     directional gyros 

DH     decision height 

DME    distance measuring equipment 

ECAM    electronic centralized aircraft monitor 

EFCS    electronic flight control system 

EGT    exhaust gas temperature 

EICAS    engine indicating and crew alerting system 

EMC    electromagnetic compatibility 

EMI     electromagnetic interference 

EPR     engine pressure ratio 

ESDU    Engineering Sciences Data Unit 

F    Fahrenheit 

F & R    function and reliability 
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FGS     flight guidance system 

FMEA    failure modes and effects analysis 

FMS    flight management system 

FOD    foreign object damage 

FS     longitudinal control (stick) force 

FSB     flight standardization board 

FS/g     stick force per g 

ft.     foot or feet 

FWC   flight warning computer 

g or G    acceleration due to gravity at the Earth’s surface 

GLS    GNSS landing system 

GNSS    global navigation satellite system 

HF     high frequency 

HGS    head up guidance system 

HQ     handling qualities 

HQRM    handling qualities rating method 

HSI     horizontal situation indicator 

HUD    head up display 

Hz     Hertz (cycles per second) 

IAS     indicated airspeed 

ICAO    International Civil Aviation Organization 

IKE     initial kinetic energy 

ILS     instrument landing system 

IMC     instrument meteorological conditions 

INS     inertial navigation system 

IRS     inertial reference system 

ITT     interstage turbine temperature 

IVSI     instantaneous vertical speed indicator 

KE     kinetic energy 

LF     low frequency 

LFE     limit flight envelope 
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LNAV    lateral navigation 

LODA    letter of design approval 

M     Mach number 

MAC    mean aerodynamic chord 

MCS    master caution system 

MCT    maximum continuous thrust 

MD     design dive Mach 

MDA    minimum descent altitude 

MDF     demonstrated flight diving Mach 

MEL    minimum equipment list 

MF     medium frequency 

MFC     maximum Mach for stablity characteristics 

MFD    multi-function display 

min.     minute(s) 

MLRC    long range cruise Mach 

MLS    microwave landing system 

MMEL    master minimum equipment list 

MMO    maximum operating Mach 

MSL    mean sea level 

MWS    master warning system 

MUH    minimum use height 

N1     rotational speed of low pressure compressor (turbine engine) 

N2     rotational speed of high pressure compressor (turbine engine) 

NAS    national airspace system 

NAV    navigate 

NM     nautical mile(s) 

NFE     normal flight envelope 

OAT    outside air temperature 

OEW    operating empty weight 

OFE     operational flight envelope 

PA     public address 
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PFC     porous friction course 

PIO     pilot induced oscillation 

Q     dynamic pressure 

R/A     radio altimeter  

RFI     radio frequency interference 

r.p.m.    revolutions per minute 

RMI     radio magnetic indicator 

RNAV    area navigation 

RNP    required navigation performance 

RTO    rejected takeoff 

RVP    Reid vapor pressure 

RVR    runway visual range 

SAS     stability augmentation system 

SAT    1. static air temperature 
    2. satisfactory (when used with the handling qualities rating method) 
 

SATCOM   satellite communications 

secs.    seconds 

SELCAL   selective calling system 

S/F     slow/fast 

SR     special regulation 

STC     supplemental type certificate 

STOL    short takeoff and landing 

SWC    stall warning computer 

TAT    total air temperature 

TAWS    terrain awareness and warning system 

TCAS    traffic collision avoidance system 

TCDS    type certificate data sheet 

TIA     type inspection authorization 

TIR     type inspection report 

TOW    takeoff warning  

TSO     technical standard order 
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T/W     thrust-to-weight ratio 

UNSAT  1. unsatisfactory  
   2. failed 

V1    maximum speed in the takeoff at which the pilot must take the first action 
(e.g.; apply brakes, reduce thrust, deploy speed brakes) to stop the airplane 
within the accelerate-stop distance.  It also means the minimum speed in the 
takeoff, following a failure of the critical engine at VEF, at which the pilot can 
continue the takeoff and achieve the required height above the takeoff surface 
within the takeoff distance.  

V2     takeoff safety speed 

V2MIN    minimum takeoff safety speed 

V35     speed at a height of 35 feet above the takeoff surface 

VD     design diving speed 

VDF     demonstrated flight diving speed 

VEF     speed at which the critical engine is assumed to fail during takeoff 

VFC     maximum speed for stability characteristics 

VFE     maximum flap extended speed 

VFR    visual flight rules 

VG     vertical gyros 

VHF    very high frequency 

VLE     maximum landing gear extended speed 

VLO     maximum landing gear operating speed 

VLOF    lift off speed 

VMC    visual meteorological conditions 

VMC     minimum control speed with the critical engine inoperative 

VMCA    minimum control speed in the air 

VMCG    minimum control speed on the ground  

VMCL    minimum control speed during approach and landing with all engines 

operating  

VMCL(1 out)   minimum control speed during approach and landing with one engine 

inoperative 

VMCL-2   minimum control speed during approach and landing with one critical engine 

inoperative (for airplanes with three or more engines) 
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VMCL-2(2 out)  minimum control speed during approach and landing with two engines 

inoperative (for airplanes with three or more engines) 

VMO     maximum operating limit speed 

VMU     minimum unstick speed 

VNAV    vertical navigation  

VOR    very high frequency omnidirectional range 

VORTAC   very high frequency omnidirectional range tactical air navigation 

VREF    reference landing speed 

VS    stalling speed or the minimum steady flight speed at which the airplane is 

controllable 

VS0     stalling speed or the minimum steady flight speed in the landing configuration 

VS1     stalling speed or the minimum steady flight speed in a specific configuration 

VSR     reference stall speed 

VSR0     reference stall speed in the landing configuration 

VSR1     reference stall speed in a specific configuration 

VSW     speed at which the onset of natural or artificial stall warning occurs 

WAT    weight, altitude, temperature 

W/δ     weight/delta 

 
Symbol   Definition 
 

Δ     incremental change in value 

δ     ratio of atmospheric pressure at any altitude to the pressure at sea level 

max     maximum friction coefficient available between a tire and the runway surface 
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Function and Reliability Tests - § 21.35(b)(2). 
 
1. Explanation. 
 
 a. In order to accomplish satisfactorily the objectives concerning additional flight tests and 
the extent thereof, the Administrator deems it necessary that: 
 
  (1) A comprehensive and systematic check be made, in flight, of the operation of all 
components to determine whether they “function properly” (i.e., perform their intended function 
without introducing safety hazards). 
 
  (2) Sufficient FAA test experience, and supplementary experience gained from 
operators’ route proving tests, should be obtained and evaluated to give reasonable assurance 
that the airplane is “reliable” (i.e., should continue to function properly in service). 
 

NOTE: In order to obtain wider experience, manufacturers are encouraged to 
cooperate with airlines or other responsible operators in operating airplanes with 
provisional type certificates under service conditions. 

 
  (3) Appropriate corrective action be taken when the need therefore is determined under 
subparagraphs (1) and (2) of this paragraph. 
 
2. Procedures.  The principal FAA flight test pilot for the project will act as coordinator of all 
flight activities during the official program, and that pilot (or a designated alternate) will 
participate in all flights.  Other FAA personnel will not board the function and reliability (F & R) 
airplane(s) during these activities, particularly in regard to flight plans and procedures, unless 
authorized by the flight test pilot.  The manufacturer’s pilot should be in command of all flights, 
but FAA pilots will fly the airplane to determine compliance with § 21.35(b)(2).  Other FAA 
personnel (e.g., representatives of other divisions and specialists) will participate in the flight 
tests, when deemed necessary, to accomplish the purpose of the tests. 
 
 a. Test Time.  It is highly desirable that function and reliability test programs be 
administered uniformly so that the program and flight time for a given project would be 
approximately the same, regardless of which FAA ACO administered the project.  This is 
difficult to achieve without establishing fixed arbitrary test times, which would obviously be 
contrary to the intent of § 21.35 (b)(2).  The following procedure, which permits considerable 
flexibility, is therefore established as guidance for administering F & R test programs: 
 
  (1) For a turbine engine-powered airplane incorporating engines of a type not 
previously certificated, § 21.35(f)(1) requires an F & R test program of at least 300 hours.  This 
300 hour minimum may also be applied to a complex new airplane model (e.g., an airplane with 
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an electronic flight control system (fly by wire)).  Though some F & R test requirements can be 
completed concurrently with certification testing (if relevant design conformity can be shown), 
experience has indicated the desirability of obtaining at least 150 hours on a production 
configured airplane.  For a previously certificated airplane, the F & R program requirement 
should be commensurate with the modifications or changes. 
 
  (2) When supplementary experience is not taken into account, and the airplane is 
conventional with regard to complexity and design features and does not incorporate engines that 
have not been previously certificated (including derivative engines), it has been found that 
function and reliability tests can be performed within 300 hours.  This time may be reduced if 
credit is granted for certain types of component testing (see paragraph 2e(2) of this Appendix) 
and for supplementary experience (see paragraph 2a(3)(c) of this Appendix).  However, it may 
be necessary to increase the 150-hour minimum F & R test requirement of § 21.35(f)(2) if 
difficulties are encountered or for unusual cases of complexity. 
 
  (3) When satisfactory supplementary experience is available and taken into account the 
following allowances should be used as a guide and applied with judgment in reducing the 
official flight test time.  However, in any case, the official F & R test program should provide 
sufficient time to accomplish the objective of paragraph 1a(2) in accordance with the procedures 
described in paragraphs 2e(3) and (4). 
 
   (a) For Intensive Experience.  When the allowance is based on the total time of 
any one airplane in airline crew training and similar intensive operations, two hours of such 
operation may be considered equivalent to one hour of official testing. 
 
   (b) For Miscellaneous Experience.  When the allowance is based on the total time 
of any one airplane, five hours of such experience may be considered equivalent to one hour of 
official testing. 
 
   (c) Reduction for Supplementary Experience.  Whenever a reduction of official 
test time is desired on the basis of supplementary experience, such experience should be 
adequately recorded and submitted to the responsible FAA aircraft certification office as 
described in paragraph 2f(2) of this appendix. 
 
 b. Test Airplane.  To facilitate completion of the type certification procedure, one airplane, 
in production configuration or equivalent, should be used for the official functional and 
reliability tests while another airplane (or airplanes) is used for the routine-type tests.  In this 
case, the test time on at least one airplane would be sufficient to accomplish the objective of 
paragraph 1a(2) of this appendix. 
 
 c. Modified Types.  The procedure outlined in paragraph d., below, applies to new type 
designs.  When a design employs components (parts) identical to those used in previous designs, 
credit may be given for the supplementary experience available for such components.  When a 
design is modified (e.g., several versions of the same basic type with different engines, 
propellers, etc.), the modified features and components should be rechecked in accordance with 
paragraph 2e(6), below. 
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 d. Test Program.  The project engineers of the responsible FAA ACO will propose 
guidelines for developing an F & R test program at the preflight type board meeting (prior to 
commencement of FAA certification flight tests) and coordinate this with the airplane 
manufacturer.  Near the conclusion of the type certification tests, the FAA certification engineers 
will again meet with the manufacturer to review the experience gained in those tests, review 
changes made in the design, consider any additional supplementary experience, and revise the 
proposed F & R test program accordingly.  In application, there is generally considerable overlap 
of the certification and F & R test programs, thus making a definite transition point indiscernible. 
 
 e. Planning and Execution of Test Program.  The following points should be considered: 
 
  (1) The test program should be sufficiently well planned to enable its execution in an 
efficient manner without overlooking important items.  Documentation should focus on the test 
objective(s) but does not necessarily require the type of detail maintained for type certification 
testing.  The FAA project engineers will review the design features and equipment (appliances) 
with respect to the general objective and prepare a list showing: 
 
   (a) Components and systems to be checked in accordance with the procedures 
described in the below paragraph 2e(4). 
 
   (b) A brief description of the operations to be performed, where these are not 
obvious (referencing any necessary operating instructions). 
 
   (c) Special checks or likely critical conditions. 
 
   (d) Estimated flight time required. 
 
  (2) Allowance may be made for those functional tests whose requirements are covered 
by part 25 type certification tests.  Allowance may also be made for qualification-type testing of 
new features and equipment; however, the flight test program should be planned to determine the 
adequacy of these tests and the accuracy of the simulated operating environment (e.g., to 
determine whether the actual environmental conditions such as temperature variation, etc., are 
covered by the test simulations) when these may be critical, and to determine whether the 
installation and connected systems are satisfactory.  This does not imply that flight tests must be 
conducted under the most severe outside air temperatures likely to be encountered in service.  It 
should normally be possible to determine the effects of extreme outside temperatures on local 
temperatures by extrapolation or by suitable correction factors.  The FAA project engineers will 
then make a consolidated estimate of the total flight time required, allowing for overlapping, and 
adjust this in accordance with the “Test Time” outlined in the above paragraph 2a. 
 
  (3) This program will be arranged to permit the principal FAA flight test pilot to 
become thoroughly familiar with the operational aspects of the airplane in its anticipated service 
environment. 
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  (4) All components of the airplane should be intensively operated and studied under all 
operating conditions expected in service and obtainable within the time and geographical 
limitations of the tests.  Intensive operation means repeated operation of components in various 
sequences and combinations likely to occur in service.  Particular attention should be given to 
potential sources of crew error, excessive crew workload or coordination, and the procedures 
that would be required in the event of malfunction of any component.  The testing should also 
include an evaluation of operations with various MEL items declared/simulated inoperative.  
This intensive type of testing should be conducted in all cases, but the length of time for which it 
is continued will depend upon the supplementary experience available for the particular type, as 
outlined in the above paragraph 2a, “Test Time.” 
 
  (5) Ground inspections should be made at appropriate intervals during the test program 
to determine whether there are any failures or incipient failures in any of the components that 
might be a hazard to safe flight.  The normal maintenance procedures should be employed during 
the F&R Program and carefully documented for review. 
 
  (6) When design changes are made during the course of the test, or when the official 
test airplane differs from those on which supplementary experience is obtained, the modified 
items will be rechecked in accordance with the above procedures.  Every effort should be made 
to include such items in the program in such a way as to avoid unduly extending the overall test 
time.  To this end, the Administrator may accept, in lieu of additional flight tests: 
 
   (a) Special tests of the original and revised components in which the conditions 
causing failure are intensified. 
 
   (b) Ground qualification tests of differing components when the test methods have 
been validated as being representative of actual flight conditions. 
 
 f. Reports and Records. 
 
  (1) A log should be kept of all flights, and accurate and complete records kept of the 
inspections made of all defects, difficulties, and unusual characteristics and sources of crew error 
discovered during the tests, and of the recommendations made and action(s) taken.  Items for 
which design changes may be required will be reported to the manufacturer and the appropriate 
FAA ACO. 
 
  (2) If supplementary experience is to be taken into account, similar records of such 
experience should be kept and submitted to the responsible FAA ACO, together with a list of the 
differences between the airplane on which the experience was obtained and the official test 
airplane.  When supplementary experience is obtained on a large fleet of airplanes (for example, 
military operations) of the same or a comparable type (see the above paragraph 2e(6)), these 
records may consist of statistical summaries in lieu of complete records for each individual 
airplane. 
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  (3) At the conclusion of the official tests, a summary report should be prepared by the 
participating pilots, engineering specialists, and manufacturing inspectors and made a part of the 
type inspection report. 
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Historical Development of Accelerate-Stop Time Delays 
 
1. Explanation.   
 
 a. As the rules pertaining to transport category airplane accelerate-stop distances have 
developed over the years, the interpretation of those rules, with regard to pilot actions, 
recognition times, and delay times, has also changed.  The paragraphs below provide a historical 
perspective on the application of pilot recognition and delay times, with references to the 
applicable part 25 amendment number. 
 
 b. In accordance with § 21.101(a) and (b), the certification basis for a derivative airplane 
type may be the regulations specified in the type certificate of the basic airplane, depending upon 
the extent and nature of the changes to the airplane.  For those cases where the original 
certification basis can be retained, the guidance presented in paragraphs 2a and b., below, may 
be used to show compliance with the appropriate regulations.  (For more information related to 
determining a derivative airplane’s certification basis, see AC 21.101-1, Change 1, “Establishing 
the Certification Basis of Changed Aeronautical Products.”) 
 
 c. Regardless of the certification basis, the effects of brake wear state on energy absorption 
capability and stopping performance must be addressed in order to comply with § 21.21(b)(2).  
The responsible FAA ACO should be contacted to establish the applicable brake wear criteria for 
a specific airplane type. 
 
2. Procedures. 
 
 a. Pre-amendment 25-42 Accelerate-Stop Time Delays.  Parts 1 and 25 of Title 14 of the 
CFR, prior to amendments 1-29 and 25-42, respectively, defined V1 as the critical engine failure 
speed.  When this definition of V1 was applied to the accelerate-stop criteria of § 25.109 and the 
V1 criteria of § 25.107(a)(2), the implication was that engine failure and engine failure 
recognition could occur simultaneously.  It was recognized that this simultaneous occurrence 
could not be achieved in actual operations, and that defining V1 as the engine failure speed 
resulted in a conflict with § 25.101(h), which requires allowance for time delays in execution of 
procedures.  In order to resolve this conflict, V1 was applied as the engine failure recognition 
speed, and appropriate time delays were developed for showing compliance with § 25.101(h).  
Figure 1 shows a pictorial representation of the accelerate-stop time delays that were considered 
acceptable for compliance with § 25.101(h) before Amendment 25-42 (effective March 1, 1978).  
Paragraph 2a(7) of this appendix provides guidance on reflecting these time delays in the AFM 
accelerate-stop distances. 
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Figure 1.  Accelerate-Stop Time Delays 
 

(Pre-Amendment 25-42)  
 
 

 
 
  (1) trec = engine failure recognition time.  The demonstrated time from engine failure 
to pilot activation of the first deceleration device, this action indicating recognition of the engine 
failure.  For AFM data expansion purposes, in order to provide a recognition time increment that 
can be executed consistently in service, it has been found practical to use the demonstrated time 
or 1 second, whichever is greater.  If the airplane incorporates an engine failure warning light, 
the recognition time includes the time increment necessary for the engine to spool down to the 
point of warning light activation, plus the time increment from light “on” to pilot action 
indicating recognition of engine failure.  
 
  (2) ta1 = the demonstrated time interval between activation of the first and second 
deceleration devices.  
 
  (3) ta2 = the demonstrated time interval between activation of the second and third 
deceleration devices.  
 
  (4) t = a 1-second reaction time delay to account for in-service variations.  If a 
command is required for another crewmember to actuate a deceleration device, a 2-second delay, 
in lieu of the 1-second delay, should be applied for each action.  For automatic deceleration 
devices that are approved for performance credit for AFM data expansion, established times 
determined during certification testing may be used without the application of the additional time 
delays required by this paragraph.  
 
  (5) The sequence for activation of deceleration devices may be selected by the 
applicant in accordance with § 25.101(f).  If, on occasion, the desired sequence is not achieved 
during testing, the test need not be repeated; however, sufficient tests should be conducted to 
establish acceptable values of ta.  
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  (6) If additional devices are used to decelerate the airplane, their respective 
demonstrated times, plus any additional required time delays, should be included until the 
airplane is in the full braking configuration.  
 
  (7) For the purpose of flight manual calculations, the 1-second delay for each action 
may be added at the end of the total demonstrated time.  Regardless of the manner in which the 
time delays are applied, the flight manual calculations should assume the airplane does not 
decelerate during the delay time increments.  
 
 b. Amendment 25-42 thru amendment 25-91, Accelerate-Stop Time Delays.  Amendment 
25-42, effective March 1, 1978, introduced several new requirements affecting accelerate-stop 
distance determination.  One of the most significant changes of Amendment 25-42 was the 
requirement to determine an all-engines-operating accelerate-stop distance to account for the 
many rejected takeoffs that were not the result of an engine failure.  Amendment 25-42 also 
introduced into the regulations an engine-failure speed, VEF; redefined the takeoff decision 
speed, V1; revised the accelerate-stop distance criteria to correspond to the VEF and V1 
definitions; and added a 2-second time delay between V1 and the first action to decelerate the 
airplane during which the airplane continues accelerating with the operating engines at takeoff 
thrust. Figure 2 shows a pictorial representation of the accelerate-stop time delays in accordance 
with the provisions of part 25, including Amendment 25-42:  
 

Figure 2. Accelerate-Stop Time Delays 
 

(Amendment 25-42 thru amendment 25-91) 
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   (1) trec - § 25.107 defines the relationship between VEF and V1 as follows: 
 

“VEF is the calibrated airspeed at which the critical engine is assumed to 
fail.  VEF must be selected by the applicant, but may not be less than 
VMCG determined under § 25.149(e).  V1, in terms of calibrated 
airspeed, is the takeoff decision speed selected by the applicant; 
however, V1 may not be less than VEF plus the speed gained with the 
critical engine inoperative during the time interval between the instant 
at which the critical engine is failed, and the instant at which the pilot 
recognizes and reacts to the engine failure, as indicated by the pilot’s 
application of the first retarding means during accelerate-stop tests.” 

 
   (2) Demonstrated engine failure recognition times less than 1 second should be 
carefully reviewed to assure the conditions under which they were obtained were representative 
of that which may reasonably be expected to occur in service.  A sufficient number of 
demonstrations should be conducted using both applicant and FAA test pilots to assure that the 
time increment is representative and repeatable.  The pilot’s feet should be on the rudder pedals, 
not brakes, during demonstration tests.  
 
   (3) ta1 = the demonstrated time interval between activation of the first and 
second deceleration devices.  
 
   (4) ta2 = the demonstrated time interval between activation of the second and 
third deceleration devices.  
 
   (5) If a command is required for another crewmember to activate a deceleration 
device, a 1-second delay, in addition to the delays specified in paragraphs (3) and (4) above, 
should be applied for each action.  For automatic deceleration devices which are approved for 
performance credit for AFM data expansion, established system times determined during 
certification testing may be used.  These established times cannot be assumed to start until after 
the pilot action that triggers them; that is, they cannot be triggered before the first pilot action 
and, hence, cannot begin until at least 2 seconds after V1.  
 
   (6) The sequence for activation of deceleration devices may be selected by the 
applicant in accordance with § 25.101(f).  If, on occasion, the desired sequence is not achieved 
during testing, the test need not be repeated; however, sufficient tests should be conducted to 
establish acceptable values of ta.  
 
   (7) Figure 2 shows a pictorial representation of how to apply time delays with up 
to three deceleration devices.  If more than three devices are used to decelerate the airplane, the 
respective demonstrated time plus a 1-second reaction time delay should be included for each 
device beyond that represented pictorially in Figure 2 until the airplane is in the full braking 
configuration. 
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History Of Jet Transport Performance Standards 
 
 When the first jet transport airplanes were certificated in the late 1950’s, the applicable 
transport category airworthiness regulations were contained in part 4b of the Civil Air 
Regulations (CAR 4b).  The airworthiness requirements of CAR 4b were developed from years 
of experience with propeller-driven airplanes powered by reciprocating engines.  The different 
powerplant operating principles, and expanded speed and altitude envelopes of the first 
generation jet-powered airplanes required comprehensive changes to the performance 
requirements of CAR 4b.  Special Civil Air Regulation No. SR-422 was adopted in July 1957 as 
a supplement to CAR 4b, containing airworthiness and operational requirements that were 
applicable to transport category airplanes powered by turbine engines (turbojet and 
turbopropeller).   
 

As experience was gained, SR-422 was amended in July 1958 (SR-422A) and July 1959 
(SR-422B) to better reflect the operating environment of these new airplane designs.  These 
special civil air regulations, presented in this appendix, formed the basis for the current transport 
category airworthiness and operating performance regulations of parts 25, 121, and 135.  Though 
the number of operational airplanes that were certificated to these requirements is continually 
decreasing, these special civil air regulations, and the related preamble material, still provide a 
worthwhile perspective on many of the issues behind the development of today’s regulations, 
and are therefore preserved for future reference in this appendix. 
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Special Civil Air Regulation No. SR-422 
 

Effective: August 27, 1957 
Adopted: July 23, 1957 

 
Turbine-Powered Transport Category Airplanes of Current Design 

 
Part 4b of the Civil Air Regulations contains rules governing the design of transport 

category airplanes.  For a number of years, this part has established airworthiness requirements 
for this category of airplanes by prescribing detailed provisions to be met for the issuance of a 
type certificate.  However, the advent of turbine-powered airplanes (jets, turbo-props, etc.) has 
brought about operations at considerably higher speeds and altitudes than those involving 
reciprocating engine airplanes.  These higher speeds and altitudes as well as certain inherent 
characteristics of turbine engines have introduced numerous new technical and design problems 
and have necessitated re-evaluation and amendment of many provisions in part 4b. 
 

In recent years the Board has amended part 4b by introducing numerous technical 
provisions more specifically applicable to turbine-powered airplanes.  These were included in 
amendments pertaining to structural, flight characteristic, powerplant installation, and other 
provisions.  It is believed that part 4b as now written is applicable to turbine-powered airplanes 
with but one exception; namely, airplane performance.  In the future, further amendments to this 
part, other than those relating to performance, will be comparatively minor in nature mainly 
reflecting the latest experience in the certification and operation of these airplanes. 
 

The performance requirements presently in part 4b were first promulgated almost twelve 
years ago.  They are now considered by the Board to be in a form not suitable for direct 
application to turbine-powered airplanes. 
 

The administrator of Civil Aeronautics is in receipt of a large number of applications for 
type certification of turbine-powered airplanes.  However, the so-called “non-retroactive” clause 
of section 4b.11(a) of part 4b does not make applicable to a particular airplane type any 
amendment which is adopted after an application is filed by the manufacturer for type 
certification of that airplane.  Thus, most of these airplanes are not now required to meet some of 
the latest effective provisions of part 4b unless the Board prescribes otherwise.  With so many 
applications for type certificates pending, it is essential that the Board establish adequate 
requirements which will effectively apply to the type certification of turbine-powered transport 
category airplanes.  This Special Civil Air Regulation is being promulgated for that purpose. 
 

This Special Civil Air Regulation is being made effective with respect to all turbine-
powered transport category airplanes not yet certificated.  In essence, it prescribes a revised set 
of performance requirements for turbine-powered airplanes and incorporates such of the recent 
amendments to part 4b as the Administrator finds necessary to insure that the level of safety of 
turbine-powered airplanes is equivalent to that generally intended by part 4b. 
 

The performance requirements contained herein include not only the performance 
requirements necessary for the certification of an airplane, but also the complementary 
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performance operating limitations as applicable under Parts 40, 41, and 42 of the Civil Air 
Regulations.  In promulgating this new performance code, the Board intends that the resulting 
level of safety will be generally similar to the level of safety established by the performance code 
as expressed by the provisions now contained in Parts 4b and 40 (or 41 or 42 as appropriate) for 
reciprocating engine airplanes.  To attain this, many of the performance provisions have been 
modified for better applicability to turbine-powered airplanes, some in the direction of 
liberalization, others in the direction of improvement in the required performance. 
 

A significant change being made is the introduction of full temperature accountability in 
all stages of performance, except the landing distances required.  The introduction of full 
temperature accountability will insure that the airplane’s performance is satisfactory irrespective 
of the existing atmospheric temperature.  The performance requirements heretofore applicable 
did not give sufficient assurance in this respect. 
 

The reason for omitting the direct application of temperature accountability in the 
requirement for landing distances is that this stage of performance always has been treated in a 
highly empirical fashion whereby temperature effects are taken into account indirectly together 
with the effects of other operational factors.  Long range studies on rationalization of airplane 
performance so far have not yielded a satisfactory solution to the landing stage of performance.  
The Board hopes, however, that continued studies will result in a solution of this problem in the 
near future. 
 

The introduction of full temperature accountability has necessitated a complete re-
evaluation of the minimum climb requirements.  Since the prescribed climb must now be met at 
all temperatures rather than to be associated with standard temperature, the specific values of 
climb have been altered.  In each instance, the change has been in the downward direction 
because, although the previous values were related to standard temperature, a satisfactory 
resultant climb performance was attained at temperatures substantially above standard.  While 
values of minimum climb performance specified in the new code will tend to increase the 
maximum certificated weights of the airplane for the lower range of temperatures, they will limit 
these weights for the upper range of temperatures, giving adequate assurance of satisfactory 
climb performance at all temperatures. 
 

In considering the various stages of flight where minimum values of climb have been 
heretofore established, the Board finds that in two of the stages (all-engines-operating en route 
and one-engine-inoperative en route) the establishment of minimum values of climb is 
unnecessary because, in the case of the all-engines-operating stage, it has been found not to be 
critical and the case of the one-engine-inoperative stage is now more effectively covered by the 
en route performance operating limitations. 
 

Considering that the minimum climbs being prescribed affect mainly the maximum 
certificated weights of the airplane but not the maximum operating weights, the Board, in 
adopting the new performance code, places considerable emphasis on the ability of the airplane 
to clear obstacles on take-off and during flight.  To this end, criteria for the take-off path, the en 
route flight paths, and the transition from take-off to the en route stage of flight have been 
prescribed to reflect realistic operating procedures.  Temperature is fully accounted for in 
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establishing all flight paths and an expanding clearance between the take-off path and the terrain 
or obstacles is required until the en route stage of flight is reached. 
 

In order to insure that the objectives of the prescribed performance are in fact realized in 
actual operations, the manufacturer is required to establish procedures to be followed in the 
operation of the airplane in the various conditions specified in the regulation.  These procedures, 
each designed for a specific airplane, will permit the operator to utilize the full performance 
capabilities of the airplane more readily than if the regulations prescribed all-inclusive 
procedures.  The use of these procedures in determining compliance with the requirements 
governing take-off, en route, and landing stages, will also add considerable flexibility to the 
regulation. 
 

The new performance requirements established more clearly than heretofore which of the 
performance limitations are conditions on the airworthiness certificate of the airplane.  In 
addition to the maximum certificated take-off and landing weights, there are included limitations 
on the take-off distances and on the use of the airplane within the ranges of operational variables, 
such as altitude, temperature, and wind.  Since these limitations are in the airworthiness 
certificate, they are applicable to all type operations conducted with the airplane. 
 

The new performance code contains values for minimum climb expressed as gradients of 
climb, in percent, rather than as rates of climb, in feet per minute, as has been the case 
heretofore.  The Board believes that the gradient of climb is more direct in expressing the 
performance margins of the airplane.  Use of the gradient eliminates the influence of the stalling 
speed on the required climb.  Heretofore, higher rates of climb were required for airplanes with 
higher stalling speeds.  The only differentiation in the new code with respect to the required 
climb is between two and four-engine airplanes.  This type of differentiation is of long standing 
in the regulations, being applicable to the one-engine-inoperative stage of flight.  It is now being 
expanded to the take-off and approach stages. 
 

The new performance requirements contained herein are based on the best information 
presently available to the Board.  It is realized, however, that due to the present limited operating 
experience with turbine-powered transport airplanes, improvement in the requirements can be 
expected as a result of the direct application of the code to specific designs of new airplanes.  
There are certain areas in the new requirements where additional refinement of details might be 
advisable.  This is so particularly in the case of the requirements pertaining to the landing stage 
of flight.  It is anticipated that, after further study of the regulation and especially after its 
application in the design, certification, and operation of forthcoming turbine-powered airplanes, 
the desirability of changes may become more apparent.  It is the intent of the Board to consider 
without delay such changes as might be found necessary.  Only after the provisions of this 
Special Civil Air Regulation are reasonably verified by practical application will the Board 
consider incorporating them on a more permanent basis into Parts 4b, 40, 41, and 42 of the Civil 
Air Regulations. 
 

This Special Civil Air Regulation is not intended to compromise the authority of the 
Administrator under section 4b.10 to impose such special conditions as he finds necessary in any 
particular case to avoid unsafe design features and otherwise to insure equivalent safety. 
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Interested persons have been afforded an opportunity to participate in the making of this 

regulation (21 F.R. 6091), and due consideration has been given to all relevant matter presented. 
 

In consideration of the foregoing, the Civil Aeronautics Board hereby makes and 
promulgates the following Special Civil Air Regulation, effective August 27, 1957. 
 

Contrary provisions of the Civil Air Regulations notwithstanding, all turbine-powered 
transport category airplanes for which a type certificate is issued after the effective date of this 
Special Civil Air Regulation shall comply with the following: 
 

1. The provisions of part 4b of the Civil Air Regulations, effective on the date of 
application for type certificate; and such of the provisions of all subsequent amendments to part 
4b, in effect prior to the effective date of this special regulation, as the Administrator finds 
necessary to insure that the level of safety of turbine-powered airplanes is equivalent to that 
generally intended by part 4b. 

 
2. In lieu of sections 4b.110 through 4b.125, and 4b.743 of part 4b of the Civil Air 

Regulations, the following shall be applicable: 
 

Performance 
 
4T.110 General. 
 
 (a) The performance of the airplane shall be determined and scheduled in accordance with, 
and shall meet the minima prescribed by, the provisions of sections 4T.110 through 4T.123.  The 
performance limitations, information, and other data shall be given in accordance with section 
4T.743. 
 
 (b) Unless otherwise specifically prescribed, the performance shall correspond with 
ambient atmospheric conditions and still air.  Humidity shall be accounted for as specified in 
paragraph (c) of this section. 
 
 (c) The performance as affected by engine power and/or thrust shall be based on a relative 
humidity of 80 percent at and below standard temperatures and on 34 percent at and above 
standard temperatures plus 50°F.  Between these two temperatures the relative humidity shall 
vary linearly. 
 
 (d) The performance shall correspond with the propulsive thrust available under the 
particular ambient atmospheric conditions, the particular flight conditions, and the relative 
humidity specified in paragraph (c) of this section.  The available propulsive thrust shall 
correspond with engine power and/or thrust not exceeding the approved power and/or thrust less 
the installational losses and less the power and/or equivalent thrust absorbed by the accessories 
and services appropriate to the particular ambient atmospheric conditions and the particular 
flight condition. 
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4T.111 Airplane configuration, speed, power, and/or thrust; general.  
 
 (a) The airplane configuration (setting of wing and cowl flaps, air brakes, landing gear, 
propeller, etc.), denoted respectively as the take-off, en route, approach, and landing 
configurations, shall be selected by the applicant except as otherwise prescribed.  
 
 (b) It shall be acceptable to make the airplane configurations variable with weight, altitude, 
and temperature, to an extent found by the Administrator to be compatible with operating 
procedures required in accordance with paragraph (c) of this section.  
 
 (c) In determining the accelerate-stop distances, take-off flight paths, take-off distances, and 
landing distances, changes in the airplane’s configuration and speed, and in the power and/or 
thrust shall be in accordance with procedures established by the applicant for the operation of the 
airplane in service, except as otherwise prescribed.  The procedures shall comply with the 
provisions of subparagraphs (1) through (3) of this paragraph.  
 
  (1) The Administrator shall find that the procedures can be consistently executed in 
service by crews of average skill.  
 
  (2) The procedures shall not involve methods or the use of devices which have not 
been proven to be safe and reliable.  
 
  (3) Allowance shall be made for such time delays in the execution of the procedures as 
may be reasonably expected to occur during service.  
 
4T.112 Stalling speeds.  
 
The minimum steady flight speed at which the airplane is controllable, in 
 
 (a) The speed VS0 shall denote the calibrated stalling speed, in knots, with:  
 
  (1) Zero thrust at the stalling speed, or engines idling and throttles closed if it is shown 
that the resultant thrust has no appreciable effect on the stalling speed;  
 

  (2) If applicable, propeller pitch controls in the position necessary for compliance with 
subparagraph (1) of this paragraph;  
 
  (3) The airplane in the landing configuration;  
 
  (4) The c.g. in the most unfavorable position within the allowable landing range;  
 
  (5) The weight of the airplane equal to the weight in connection with which VS is being 
used to determine compliance with a particular requirement.  
 
 (b) The speed VS1 shall denote the calibrated stalling speed, or the minimum steady flight 
speed at which the airplane is controllable, in knots, with:  
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  (1) Zero thrust at the stalling speed, or engines idling and throttles closed if it is shown 
that the resultant thrust has no appreciable effect on the stalling speed;  
 
  (2) If applicable, propeller pitch controls in the position necessary for compliance with 
subparagraph (1) of this paragraph; the airplane in all other respects (flaps, landing gear, etc.) in 
the particular configuration corresponding with that in connection with which VS1 is being used;  
 
  (3) The weight of the airplane equal to the weight in connection with which VS1 is 
being used to determine compliance with a particular requirement.  
 
 (c) The stall speeds defined in this section shall be the minimum speeds obtained in flight 
tests conducted in accordance with the procedure of subparagraphs (1) and (2) of this paragraph.  
 
  (1) With the airplane trimmed for straight flight at a speed of 1.4 VS and from a speed 
sufficiently above the stalling speed to insure steady conditions, the elevator control shall be 
applied at a rate such that the airplane speed reduction does not exceed one knot per second.  
 
  (2) During the test prescribed in subparagraph (1) of this paragraph, the flight 
characteristics provisions of section 4b.160 of part 4b of the Civil Air Regulations shall be 
complied with.  
 
4T.113 Take-off; general 
 
 (a) The take-off data in sections 4T.114 through 4T.117 shall be determined under the 
conditions of subparagraphs (1) and (2) of this paragraph.  
 
  (1) At all weights, altitudes, and ambient temperatures within the operational limits 
established by the applicant for the airplane.  
 
  (2) In the configuration for take-off (see sec. 4T.111).  
 
 (b) Take-off data shall be based on a smooth, dry, hard-surfaced runway, and shall be 
determined in such a manner that reproduction of the performance does not require exceptional 
skill or alertness on the part of the pilot.  In the case of seaplanes or float planes, the take-off 
surface shall be smooth water, while for skiplanes it shall be smooth dry snow.  In addition, the 
take-off data shall be corrected in accordance with subparagraphs (1) and (2) of this paragraph 
for wind and for runway gradients within the operational limits established by the applicant for 
the airplane.  

 
  (1) Not more than 50 percent of nominal wind components along the take-off path 
opposite to the direction of take-off, and not less than 150 percent of nominal wind components 
along the take-off path in the direction of take-off.  
 
  (2) Effective runway gradients.  
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4T.114 Take-off speeds.  
 
 (a) The critical-engine-failure speed V1, in terms of calibrated air speed, shall be selected 
by the applicant, but shall not be less than the minimum speed at which controllability by 
primary aerodynamic controls alone is demonstrated during the take-off run to be adequate to 
permit proceeding safely with the take-off using average piloting skill, when the critical engine 
is suddenly made inoperative.  
 
 (b) The minimum take-off safety speed V2, in terms of calibrated air speed, shall be selected 
by the applicant so as to permit the gradient of climb required in section 4T.120 (a) and (b), but 
it shall not be less than:  
 
  (1) 1.2 VS1 for two-engine propeller-driven airplanes and for airplanes without 
propellers which have no provisions for obtaining a significant reduction in the one-engine-
inoperative power-on stalling speed.  
 
  (2) 1.15 VS1 for propeller-driven airplanes having more than two engines and for 
airplanes without propellers which have provisions for obtaining a significant reduction in the 
one-engine-inoperative power-on stalling speed;  
 
  (3) 1.10 times the minimum control speed VMC , established in accordance with section 
4b.133 of part 4b of the Civil Air Regulations.  
 
  (c) If engine failure is assumed to occur at or after the attainment of V2 , the 
demonstration in which the take-off run is continued to include the take-off climb, as provided in 
paragraph (a) of this section, shall not be required.  
 
4T.115 Accelerate-stop distance.  
 
 (a) The accelerate-stop distance shall be the sum of the following:  
 
  (1) The distance required to accelerate the airplane from a standing start to the speed 
V1;  
 
  (2) Assuming the critical engine to fail at the speed V1, the distance required to bring 
the airplane to a full stop from the point corresponding with the speed V1.  
 
 (b) In addition to, or in lieu of, wheel brakes, the use of other braking means shall be 
acceptable in determining the accelerate-stop distance, provided that such braking means shall 
have been proven to be safe and reliable, that the manner of their employment is such that 
consistent results can be expected in service, and that exceptional skill is not required to control 
the airplane.  
 
 (c) The landing gear shall remain extended throughout the accelerate-stop distance.  
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4T.116 Take-off path.  The take-off path shall be considered to extend from the standing start 
to a point in the take-off where a height of 1,000 feet above the take-off surface is reached or to a 
point in the take-off where the transition from the take-off to the en route configuration is 
completed and a speed is reached at which compliance with section 4T.120(c) is shown, 
whichever point is at a higher altitude.  The conditions of paragraphs (a) through (i) of this 
section shall apply in determining the take-off path.  
 
 (a) The take-off path shall be based upon procedures prescribed in accordance with section 
4T.111(c).  
 
 (b) The airplane shall be accelerated on or near the ground to the speed V2 during which 
time the critical engine shall be made inoperative at speed V1 and shall remain inoperative during 
the remainder of the take-off.  
 
 (c) Landing gear retraction shall not be initiated prior to reaching the speed V2  
 
 (d) The slope of the airborne portion of the take-off path shall be positive at all points.  
 
 (e) After the V2 speed is reached, the speed throughout the take-off path shall not be less 
than V2 and shall be constant from the point where the landing gear is completely retracted until 
a height of 400 feet above the take-off surface is reached.  
 
 (f) Except for gear retraction and propeller feathering, the airplane configuration shall not 
be changed before reaching a height of 400 feet above the take-off surface.  
 

(g) At all points along the take-off path starting at the point where the airplane first reaches 
a height of 400 feet above the take-off surface, the available gradient of climb shall not be less 
than 1.4 percent for two-engine airplanes and 1.8 percent for four-engine airplanes.  
 
 (h) The take-off path shall be determined either by a continuous demonstration take-off, or 
alternatively, by synthesizing from segments the complete take-off path.  
 
 (i) If the take-off path is determined by the segmental method, the provisions of 
subparagraphs (1) through (4) of this paragraph shall be specifically applicable.  
 
  (1) The segments of a segmental take-off path shall be clearly defined and shall be 
related to the distinct changes in the configuration of the airplane, in power and/or thrust, and in 
speed.  
 
  (2) The weight of the airplane, the configuration, and the power and/or thrust shall be 
constant throughout each segment and shall correspond with the most critical condition 
prevailing in the particular segment.  
 
  (3) The segmental flight path shall be based on the airplane’s performance without 
ground effect. 
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  (4) Segmental take-off path data shall be checked by continuous demonstrated take-
offs to insure that the segmental path is conservative relative to the continuous path.  
 
4T.117 Take-off distance.  The take-off distance shall be the horizontal distance along the take-
off path from the start of the take-off to the point where the airplane attains a height of 35 feet 
above the take-off surface as determined in accordance with 4T.116.  
 
4T.118 Climb; general.  Compliance shall be shown with the climb requirements of sections 
4T.119 and 4T.120 at all weights, altitudes, and ambient temperatures, within the operational 
limits established by the applicant for the airplane.  The airplane’s c.g. shall be in the most 
unfavorable position corresponding with the applicable configuration.  
 
4T.119 All-engine-operating landing climb.  In the landing configuration, the steady gradient 
of climb shall not be less than 4.0 per cent, with:  
 
 (a) All engines operating at the available take-off power and/or thrust;  
 
 (b) A climb speed not in excess of 1.4 VS0.  
 
4T.120 One-engine-inoperative climb.  
 
 (a) Take-off; landing gear extended.  In the take-off configuration at the point of the flight 
path where the airplane’s speed first reaches V2, in accordance with section 4T.116 but without 
ground effect, the steady gradient of climb shall be positive with:  
 
  (1) The critical engine inoperative, the remaining engine(s) operating at the available 
take-off power and/or thrust existing in accordance with section 4T.116 at the time the airplane’s 
landing gear is fully retracted;  
 
  (2) The weight equal to the airplane’s weight existing in accordance with section 
4T.116 at the time retraction of the airplane’s landing gear is initiated;  
 
  (3) The speed equal to the speed V2.  
 
 (b) Take-off; landing gear retracted.  In the take-off configuration at the point of the flight 
path where the airplane’s landing gear is fully retracted, in accordance with section 4T.116 but 
without ground effect, the steady gradient of climb shall not be less than 2.5 percent for 
two-engine airplanes and not less than 3.0 percent for four-engine airplanes, with:  
 
  (1) The critical engine inoperative, the remaining engine(s) operating at the take-off 
power and/or thrust available at a height of 400 feet above the take-off surface and existing in 
accordance with section 4T.116;  
 
  (2) The weight equal to the airplane’s weight existing in accordance with section 
4T.116 at the time the airplane’s landing gear is fully retracted;  
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  (3) The speed equal to the speed V2.  
 
 (c) Final take-off.  In the en route configuration, the steady gradient of climb shall not be 
less than 1.4 percent for two-engine airplanes and not less than 1.8 percent for four-engine 
airplanes, at the end of the take-off path as determined by section 4T.116, with:  
 
  (1) The critical engine inoperative, the remaining engine(s) operating at the available 
maximum continuous power and/or thrust;  
 
  (2) The weight equal to the airplane’s weight existing in accordance with section 
4T.116 at the time retraction of the airplane’s flaps is initiated;  
 
  (3) The speed equal to not less than 1.25 VS1.  
 
 (d) Approach.  In the approach configuration such that VS1 does not exceed 1.10 VS0, the 
steady gradient of climb shall not be less than 2.2 percent for two-engine airplanes and not less 
than 2.8 percent for four-engine airplanes, with:  
 
  (1) The critical engine inoperative, the remaining engine(s) operating at the available 
take-off power and/or thrust;  
 
  (2) The weight equal to the maximum landing weight;  
 
  (3) A climb speed in excess of 1.5 VS1. 
 
4T.121 En route flight paths.  With the airplane in the en route configuration, the flight paths 
prescribed in paragraphs (a) and (b) of this section shall be determined at all weights, altitudes, 
and ambient temperatures within the limits established by the applicant for the airplane.  
 
 (a) One engine inoperative.  The one-engine-inoperative net flight path data shall be 
determined in such a manner that they represent the airplane’s actual climb performance 
diminished by a gradient of climb equal to 1.4 percent for two-engine airplanes and 1.8 percent 
for four-engine airplanes.  It shall be acceptable to include in these data the variation of the 
airplane’s weight along the flight path to take into account the progressive consumption of fuel 
and oil by the operating engine(s).  
 
 (b) Two engines inoperative.  For airplanes with four engines, the two-engine-inoperative 
net flight path data shall be determined in such a manner that they represent the airplane’s actual 
climb performance diminished by a gradient of climb equal to 0.6 percent.  It shall be acceptable 
to include in these data the variation of the airplane’s weight along the flight path to take into 
account the progressive consumption of fuel and oil by the operating engines.  
 
 (c) Conditions.  In determining the flight paths prescribed in paragraphs (a) and (b) of this 
section, the conditions of subparagraphs (1) through (4) of this paragraph shall apply.  
 
  (1) The airplane’s c.g. shall be in the most unfavorable position.  
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  (2) The critical engine(s) shall be inoperative, the remaining engine(s) operating at the 
available maximum continuous power and/or thrust.  
 
  (3) Means for controlling the engine cooling air supply shall be in the position which 
provides adequate cooling in the hot-day condition.  
 
  (4) The speed shall be selected by the applicant.  
 
4T.122 Landing distance.  The landing distance shall be the horizontal distance required to land 
and to come to a complete stop (to a speed of approximately 3 knots in the case of seaplanes or 
float planes) from a point at a height of 50 feet above the landing surface.  Landing distances 
shall be determined for standard temperatures at all weights, altitudes, and winds within the 
operational limits established by the applicant for the airplane.  The conditions of paragraphs (a) 
through (f) of this section shall apply.  
 
 (a) The airplane shall be in the landing configuration.  During the landing, changes in the 
airplane’s configuration, in power and/or thrust, and in speed shall be in accordance with 
procedures established by the applicant for the operation of the airplane in service.  The 
procedures shall comply with the provisions of section 4T.111(c).  
 
 (b) The landing shall be preceded by a steady gliding approach down to the 50-foot height 
with a calibrated air speed of not less than 1.3 VS0.  
 
 (c) The landing distance shall be based on a smooth, dry, hard-surfaced runway, and shall 
be determined in such a manner that reproduction does not require exceptional skill or alertness 
on the part of the pilot.  In the case of seaplanes or float planes, the landing surface shall be 
smooth water, while for skiplanes it shall be smooth dry snow.  During landing, the airplane 
shall not exhibit excessive vertical acceleration, a tendency to bounce, nose over, ground loop, 
porpoise, or water loop.  
 
 (d) The landing distance shall be corrected for not more than 50 percent of nominal wind 
components along the landing path opposite to the direction of landing and not less than 150 
percent of nominal wind components along the landing path in the direction of landing.  
 
 (e) During landing, the operating pressures on the wheel braking system shall not be in 
excess of those approved by the manufacturer of the brakes, and the wheel brakes shall not be 
used in such a manner as to produce excessive wear of brakes and tires.  
 
 (f) If the Administrator finds that a device on the airplane other than wheel brakes has a 
noticeable effect on the landing distance and if the device depends upon the operation of the 
engine and the effect of such a device is not compensated for by other devices in the event of 
engine failure, the landing distance shall be determined by assuming the critical engine to be 
inoperative.  
 
4T.123 Limitations and information.  
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 (a) Limitations.  The performance limitations on the operation of the airplane shall be 
established in accordance with subparagraphs (1) through (4) of this paragraph.  (See also sec. 
4T.743.)  
 
  (1) Take-off weights.  The maximum take-off weights shall be established at which 
compliance is shown with the generally applicable provisions of this regulation and with section 
4T.120(a), (b), and (c) for altitudes and ambient temperatures within the operational limits of the 
airplane (see subparagraph (4) of this paragraph).  
 
  (2) Landing weights.  The maximum landing weights shall be established at which 
compliance is shown with the generally applicable provisions of this regulation and with sections  
4T.119 and 4T.120(d) for altitudes and ambient temperatures within the operational limits of the 
airplane (see subparagraph (4) of this paragraph).  
 
  (3) Take-off and accelerate-stop distances.  The minimum distances required for take-
off shall be established at which compliance is shown with the generally applicable provisions of 
this regulation and with sections 4T.115 and 4T.117 for weights, altitudes, temperatures, wind 
components, and runway gradients, within the operational limits of the airplane (see 
subparagraph (4) of this paragraph).  
 
  (4) Operational limits.  The operational limits of the airplane shall be established by 
the applicant for all variable factors required in showing compliance with this regulation (weight, 
altitude, temperature, etc.).  (See secs. 4T.113(a)(1) and (b), 4T.118, 4T.121, and 4T.122.)  
 
 (b) Information.  The performance information on the operation of the airplane shall be 
scheduled in compliance with the generally applicable provisions of this regulation and with 
sections 4T.116, 4T.121, and 4T.122 for weights, altitudes, temperatures, wind components, and 
runway gradients, as these may be applicable, within the operational limits of the airplane (see 
subparagraph (a)(4) of this section).  In addition, the performance information specified in 
subparagraphs (1) through (3) of this paragraph shall be determined by extrapolation and 
scheduled for the ranges of weights between the maximum landing and maximum take-off 
weights established in accordance with subparagraphs (a) (1) and (a) (2) of this section.  (See 
also sec. 4T.743.)  
 
  (1) Climb in the landing configuration (see sec. 4T.119);  
 
  (2) Climb in the approach configuration (see sec. 4T.120(d));  
 
  (3) Landing distance (see sec. 4T.122).  
 
 

Airplane Flight Manual 
 
4T.743 Performance limitations, information, and other data.  
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 (a) Limitations.  The airplanes’ performance limitations shall be given in accordance with 
section 4T.123(a).  
 
 (b) Information.  The performance information prescribed in section 4T.123(b) for the 
application of the operating rules of this regulation shall be given together with descriptions of 
the conditions, air speeds, etc. under which the data were determined.  
 
 (c) Procedures.  For all stages of flight, procedures shall be given with respect to airplane 
configurations, power and/or thrust settings, and indicated air speeds, to the extent such 
procedures are related to the limitations and information set forth in accordance with paragraphs 
(a) and (b) of this section.  
 
 (d) Miscellaneous.  An explanation shall be given of significant or unusual flight or ground 
handling characteristics of the airplane.  
 

3.  In lieu of sections 40.70 through 40.78, 41-27 through 41.36(d), and 42.70 through 42.83, 
of Parts 40, 41, and 42 of the Civil Air Regulations, respectively, the following shall be 
applicable:  
 

Operating Rules 
 
40T.80 Transport category airplane operating limitations.  
 
 (a) In operating any passenger-carrying transport category airplane certificated in 
accordance with the performance requirements of this regulation, the provisions of sections 
40T.80 through 40T.894 shall be complied with, unless deviations therefrom are specifically 
authorized by the Administrator on the ground that the special circumstances of a particular case 
make a literal observance of the requirements unnecessary for safety.  
 
 (b) The performance data in the AFM shall be applied in determining compliance with the 
provisions of sections 40T.81 through 40T.84.  Where conditions differ from those for which 
specific tests were made compliance shall be determined by approved interpolation or 
computation of the effects of changes in the specific variables if such interpolations or 
computations give results substantially equaling in accuracy the results of a direct test.  
 
40T.81 Airplane’s certificate limitations.  
 
 (a) No airplane shall be taken off at a weight which exceeds the take-off weight specified in 
the AFM for the elevation of the airport and for the ambient temperature existing at the time of 
the take-off.  (See sec. 4T.123(a)(1) and 4T.743(a).)  
 
 (b) No airplane shall be taken off at a weight such that, allowing for normal consumption of 
fuel and oil in flight to the airport of destination, the weight on arrival will exceed the landing 
weight specified in the AFM for the elevation of the airport of destination and for the ambient 
temperature anticipated there at the time of landing.  (See secs. 4T.123(a) (2) and 4T.743(a).)  
 

 A4-14 



7/23/57  AC 25-7C 
  Appendix 4 

 (c) No airplane shall be taken off at a weight which exceeds the weight shown in the AFM 
to correspond with the minimum distance required for take-off on the runway to be used.  The 
take-off distance shall correspond with the elevation of the airport, the effective runway gradient, 
and the ambient temperature and wind component existing at the time of take-off.  (See secs. 
4T.123(a)(3) and 4T.743 (a).)  
 
 (d) No airplane shall be operated outside the operational limits specified in the AFM (See 
secs. 4T.123(a) (4) and 4T.742(a)).  
 
40T.82 Take-off obstacle clearance limitations.  No airplane shall be taken off at a weight in 
excess of that shown in the AFM to correspond with a take-off path which clears all obstacles 
either by at least a height equal to (35 + 0.01D) feet vertically, where D is the distance out along 
the intended flight path from the end of the runway in feet, or by at least 200 feet horizontally 
within the airport boundaries and by at least 300 feet horizontally after passing beyond the 
boundaries.  In determining the allowable deviation of the flight path in order to avoid obstacles 
by at least the distances prescribed, it shall be assumed that the airplane is not banked before 
reaching a height of 50 feet as shown by the take-off path data in the AFM, and that a maximum 
bank thereafter does not exceed 15 degrees.  The take-off path considered shall be for the 
elevation of the airport, the effective runway gradient, and for the ambient temperature and wind 
component existing at the time of take-off.  (See secs. 4T.123(b) and 4T.743(b).)  
 
40T.83 En route limitations.  
 
 (a) One engine inoperative.  No airplane shall be taken off at a weight in excess of that 
which, according to the one-engine-inoperative en route net flight path data shown in the AFM, 
will permit compliance with either subparagraph (1) or subparagraph (2) of this paragraph at all 
points along the route.  The net flight path used shall be for the ambient temperatures anticipated 
along the route.  (See secs. 4T.123(b) and 4T.743(b).)  
 
  (1) The slope of the net flight path shall be positive at an altitude of at least 1,000 feet 
above all terrain and obstructions along the route within 5 miles on either side of the intended 
track.  
 
  (2) The net flight path shall be such as to permit the airplane to continue flight from the 
cruising altitude to an alternate airport where a landing can be made in accordance with the 
provisions of section 40T.84(b), the net flight path clearing vertically by at least 2,000 feet all 
terrain and obstructions along the route within 5 miles on either side of the intended track.  The 
provisions of subdivisions (i) through (vii) of this paragraph shall apply.  
 
   (i) The engine shall be assumed to fail at the most critical point along the route.  
 
   (ii) The airplanes shall be assumed to pass over the critical obstruction following 
engine failure at a point no closer to the critical obstruction than the nearest approved radio 
navigational fix, except that the Administrator may authorize a procedure established on a 
different basis where adequate operational safeguards are found to exist.  
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   (iii) The net flight path shall have a positive slope at 1,000 feet above the airport 
used as the alternate.  
 
   (iv) An approved method shall be used to account for winds which would 
otherwise adversely affect the flight path.  
 
   (v) Fuel jettisoning shall be permitted if the Administrator finds that the operator 
has an adequate training program, proper instructions are given to the flight crew, and all other 
precautions are taken to insure a safe procedure.  
 
   (vi) The alternate airport shall be specified in the dispatch release and shall meet 
the prescribed weather minima.  
 
   (vii) The consumption of fuel and oil after the engine becomes inoperative shall be 
that which is accounted for in the net flight path data shown in the AFM.  
 
 (b) Two engines inoperative.  No airplane shall be flown along an intended route except in 
compliance with either subparagraph (1) or subparagraph (2) of this paragraph.  
 
  (1) No place along the intended track shall be more than 90 minutes away from an 
airport at which a landing can be made in accordance with the provisions of section 40T.84(b), 
assuming all engines to be operating at cruising power.  
 
  (2) No airplane shall be taken off at a weight in excess of that which, according to the 
two-engine-inoperative en route net flight path data shown in the AFM, will permit the airplane 
to continue flight from the point where two engines are assumed to fail simultaneously to an 
airport where a landing can be made in accordance with the provisions of section 40T.84(b), the 
net flight path having a positive slope at an altitude of at least 1,000 feet above all terrain and 
obstructions along the route within 5 miles on either side of the intended track or at an altitude of 
5,000 feet, whichever is higher.  The net flight path considered shall be for the ambient 
temperatures anticipated along the route.  The provisions of subdivision (i) through (iii) of this 
subparagraph shall apply.  (See secs. 4T.123(b) and 4T.743(b).)  
 
   (i) The two engines shall be assumed to fail at the most critical point along the 
route.  
 
   (ii) If fuel jettisoning is provided, the airplane’s weight at the point where the two 
engines are assumed to fail shall be considered to be not less than that which would include 
sufficient fuel to proceed to the airport and to arrive there at an altitude of at least 1,000 feet 
directly over the landing area.  
 
   (iii) The consumption of fuel and oil after the engines become inoperative shall be 
that which is accounted for in the net flight path data shown in the AFM.  
 
40T.84 Landing limitations.  
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 (a) Airport of destination.  No airplane shall be taken off at a weight in excess of that 
which, in accordance with the landing distances shown in the AFM for the elevation of the 
airport of intended destination and for the wind conditions anticipated there at the time of 
landing, would permit the airplane to be brought to rest at the airport of intended destination 
within 60 percent of the effective length of the runway from a point 50 feet directly above the 
intersection of the obstruction clearance plane and the runway.  The weight of the airplane shall 
be assumed to be reduced by the weight of the fuel and oil expected to be consumed in flight to 
the airport of intended destination.  Compliance shall be shown with the conditions of 
subparagraphs (1) and (2) of this paragraph.  (See secs. 4T.123(b) and 4T.743(b).)  
 
  (1) It shall be assumed that the airplane is landed on the most favorable runway and 
direction in still air.  
 
  (2) It shall be assumed that the airplane is landed on the most suitable runway 
considering the probable wind velocity and direction and taking due account of the ground 
handling characteristics of the airplane and of other conditions (i.e., landing aids, terrain, etc.).  
If full compliance with the provisions of this subparagraph is not shown, the airplane may be 
taken off if an alternate airport is designated which permits compliance with paragraph (b) of 
this section.  
 
 (b) Alternate airport.  No airport shall be designated as an alternate airport in a dispatch 
release unless the airplane at the weight anticipated at the time of arrival at such airport can 
comply with the provisions of paragraph (a) of this section, provided that the airplane can be 
brought to rest within 70 percent of the effective length of the runway.  
 
 

Special Civil Air Regulation No. SR-422A 
 

Adopted: July 2, 1958 
Effective: July 2, 1958 

 
Turbine-Powered Transport Category Airplanes of Current Design 

 
On July 23, 1957, the Board adopted Special Civil Air Regulation No. SR-422 which sets 

forth airworthiness requirements applicable to the type certification and operation of turbine-
powered transport category airplanes for which a type certificate is issued after August 27, 1957.  
Included in that regulation was a new set of performance requirements, with respect to which the 
Board indicated that consideration would be given to any changes found necessary as a result of 
further study and experience.  The preamble to SR-422 contains the relevant considerations 
leading to its promulgation and is considered to provide the basic background for this regulation. 
 

Since the adoption of SR-422, considerable study has been devoted to the new 
performance requirements by all interested parties.  As a result of these studies and of further 
experience gained in the design, certification, and operation of turbine-powered airplanes, 
certain issues with respect to SR-422 require re-evaluation.  This regulation reflects the 
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resolution of most of the outstanding issues in the light of the best information presently 
available to the Board. 
 

The following provisions of this regulation differ from, or are additional to, the 
provisions of SR-422; Introductory paragraph; item 1; sections 4T.111(c); 4T.112; 4T.114 (b), 
(b)(1), (b)(4), and (c); introductory paragraph of  4T.116; 4T.116 (b), (c), (e), and (g); 4T.117; 
4T.117a; 4T.119; 4T.120 (a), (a)(1), (b), (b)(1), (c), (c)(2), (c)(3), (d), and (d)(3); 4T.121 (a) and 
(b); introductory paragraph of 4T.122; 4T.122 (b), (f), and (g); 4T.123 (a)(1), (a)(2), (a)(3), and 
(b); 4T.743(c); 40T.81 (b) and (c); 40T.82; 40T.83 (a)(2)(iii), (b)(2), and (b)(2)(ii); item 4;  and 
item 5.   

 
Of these provisions, the following differ from those proposed in Civil Air Regulations 

Draft Release No. 58-6: sections 4T.111(c); 4T.112(a)(4); 4T.114 (b)(4), (c), (c)(2), (c)(3), and 
(c)(4); 4T.116 (c) and (e); 4T.117 (b)(1) and (b)(2); 4T.119(a); 4T.120(a); 40T.81(c) and 
43T.11(c). 
 

With respect to the applicability of this regulation, experience with certification under 
SR-422 indicates that a lead time of about two months between the date of adoption of the 
regulation and the date of issuance of the type certificate should provide a reasonable period of 
time within which to show compliance with this regulation.  In view of this, and in the interest of 
having uniform regulations applicable to most of the turbine-powered airplanes, it is considered 
advisable to have this regulation apply to all such airplanes for which a type certificate is issued 
after September 30, 1958.  Turbine-powered transport category airplanes for which a type 
certificate is issued on or prior to September 30, 1958, may comply with the provisions of this 
regulation in lieu of SR-422.  If this option is exercised, it is intended that compliance be shown 
with all the provisions of this regulation and it is not intended to permit a showing of compliance 
with portions of this regulation and portions of SR-422. 
 

The provisions of this regulation involve the following technical issues: 
 

A substantive change is made by introducing an all-engines-operating take-off in 
establishing the take-off distance.  Presently, the take-off distance is based only on a one-engine-
out take-off.  To insure that an adequate margin of safety will exist for day-in and day-out 
operations, the minimum take-off distance is being related to both the one-engine-inoperative 
distance now prescribed and to the distance with all engines operating, with a factor of 1.15 
being applied to the latter. 
 

There are also included important changes with respect to the speeds applicable to the 
take-off path.  The provisions of SR-422 prescribe that the airplane shall be accelerated on or 
near the ground to the speed V2.  This provision has been subject to varying interpretations 
having a marked difference in effect on the resultant level of performance.  The issue in this 
matter is whether or not the airplane should be permitted to lift off the runway at some speed 
below V2.  Because of the increased acceleration of turbine-powered airplanes, the tendency to 
overshoot the lift-off speed will be greater than on piston-engine airplanes and this tendency 
increases with the reduction in weight of the airplane.  To restrict lift-off to the minimum take-
off safety speed V2 would unduly extend the take-off distance in cases where such overshooting 
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of speed occurs.  Such a restriction would be unnecessarily conservative and would not reflect 
realistic take-off procedures.  For these reasons this regulation permits the airplane to lift off the 
ground at a speed lower than the V2 speed, but prescribes certain limiting conditions.  The lift-off 
speed is related to a rotational speed VR which must not be less than 95 percent of the minimum 
V2 speed and must be 10 percent greater than a speed at which no hazardous characteristics are 
displayed by the airplane, such as a relatively high drag condition or a ground stall.  The V2 

speed has been re-defined to take into account the increment in speed arising from overshoot 
tendencies.  Under the new definition, the minimum V2 speed corresponds with the minimum 
take-off safety speed as now defined in SR-422.  With respect to the take-off path, the V2 speed 
is required to be attained prior to reaching a height of 35 feet above the take-off surface and thus 
is related to the selection of the rotational speed.  Further, there is a revision which requires V2 to 
be maintained as close as practicable at a constant value from the 35-foot point to a height of 400 
feet above the take-off surface.  This speed is the speed at which the prescribed minimum take-
off gradients must be met. 
 

There is introduced in this regulation the concept of unbalanced take-off field lengths.  
SR-422 does not preclude unbalancing of field lengths, provided that the unbalancing is within 
the length of the runway.  Other countries have employed unbalancing with respect to so-ca1led 
“stopways” and “clearways.”  It appears that United States operators ultimately will find it 
advantageous to resort to the use of unbalancing, but probably not to the same extent as practiced 
in other countries.  On the premise that only clearways will be utilized, the amendments have 
been formulated accordingly.  Clearways, as defined herein, are areas not suitable for stopping 
the airplane in the event of an aborted take-off, but adequate to provide additional take-off 
distance for climb-out.  To safeguard operations utilizing clearways, there is introduced the 
concept of a take-off run which operationally relates to the determination of the minimum 
runway length required.  The take-off run is defined as the greater of the horizontal distances 
along the take-off path to a given point with one engine inoperative or with all engines operating, 
with a margin of 15 percent being added to the latter.  The take-off run is measured from the 
beginning of take-off to a point equidistant between the point where the airplane lifts off and the 
point where a height of 35 feet is reached.  The required runway length must not be less than the 
take-off run nor less than the accelerate stop distance. 
 

According to the definition given, a clearway is subjected to the control of the airport 
authorities.  It is not intended, however, that there be ownership by the airport authorities of the 
area in which the clearway lies.  The objective for requiring control by the airport authorities is 
to insure that no flight will be initiated using a clearway unless it is determined with certainty 
that no movable obstacle will exist within the clearway when the airplane flies over. 
 

It is anticipated that the introduction of clearways will offer further possibilities of 
increasing the utility of existing airport facilities in this country.  When such areas can be 
integrated into existing facilities, economical benefits will accrue to the community and the 
operators.  In addition, since clearways are presently available at some of the airports in other 
countries, United States operators will have the opportunity of taking advantage of such 
facilities. 
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There are included changes with respect to the prescribed minimum altitude of 1,000 feet 
relative to the take-off path and to the one-engine-inoperative and two-engine-inoperative 
requirements applicable to the vicinity of the airport.  Heretofore, the Civil Air Regulations have 
incorporated the reference altitude of 1,000 feet in respect of performance criteria over the 
airport.  Obscure as is the significance of this altitude operationally, the altitude of 1,500 feet has 
worldwide precedent of being used as the altitude above the airport at which, generally, IFR 
approaches are initiated and go-around procedures executed.  For this reason, the changes made 
extend the take-off path to a minimum altitude of 1,500 feet and make this altitude applicable to 
the prescribed performance criteria above the airport for the one- and two-engine-inoperative en 
route requirements.  It is not anticipated that these changes will create any problems with respect 
to the en route stages of flight; however, it is realized that a further extension of the take-off path 
might add to the problem of obtaining accurate data on obstacles relatively distant from the 
airport.  The Board finds that the extension of the flight path to 1,500 feet is warranted in light of 
the operational significance of this altitude and because the extended flight paths will provide 
more fully for adequate terrain clearance at the end of the take-off path. 
 

There is included a change with respect to the take-off path whereby the take-off flight 
path is established as starting from a 35-foot height at the end of the take-off distance and a net 
take-off flight is prescribed for operational use.  This latter change is for consistency with the 
specification of net flight paths for the en route stages of flight and to simplify determination of 
obstacle clearances operationally.  The net flight path is specified to be the actual flight path 
diminished by a gradient of 1.0 percent.  It is intended that the net flight path be obtained from 
the gross flight path by simple geometric means. 
 

The change in the altitude from 1,000 to 1,500 feet previously mentioned, as well as a 
reevaluation in other respects of some of the climb gradients in SR-422, justify certain changes.  
The gradients of l.4 and 1.8 applicable to the take-off path and the final take-off climb are being 
reduced to 1.2 and 1.7 for two-engine and four-engine airplanes, respectively.  In addition, the 
gradients 1.4 and 1.8 in the one-engine-inoperative en route case are being reduced to 1.1 and 
1.6, respectively. 
 

Changes are made with respect to the one-engine-inoperative take-off climb by 
interrelating more realistically the prescribed airplane configuration, weight, and power.  These 
changes, in effect, permit meeting the prescribed gradients of climb at slightly higher airplane 
weights than would be possible under the presently effective provisions. 
 

There is included a change to the provisions applicable to the one-engine-inoperative 
take-off climb with landing gear extended which increases the prescribed minimum gradient 
from substantially zero to 0.5 percent for four-engine airplanes.  This change is made to attain 
consistency in the difference between gradients applicable to twins and fours. 
 

Changes are incorporated in connection with the two-engine-inoperative en route 
requirement.  Representations have been made that the gradient of 0.6 percent now prescribed is 
unduly conservative.  On the other hand, it has been pointed out that the fuel requirements for 
this case are not realistically covered.  Both of these contentions warrant consideration and 
changes are included which reduce the margin gradient from 0.6 to 0.5 percent, reduce the 
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prescribed altitude from 5,000 to 2,000 feet, and require scheduling the flight so that there is 
sufficient fuel on board to reach the airport and subsequently to fly for 15 minutes at cruise 
power or thrust. 
 

Changes are also made relative to the approach and landing stages of flight.  There is a 
new provision which requires the establishment of procedures for the execution of missed 
approaches and balked landings.  A question has been raised as to whether the speed limitation 
of 1.5 VS applicable to the approach condition is realistically related to the normal day-in and 
day-out landing procedures.  To insure that it will be so related, it is required that the speed used 
for demonstrating the approach climb be established consistent with the landing procedures, but 
that it not exceed 1.5 VS.  In addition, the approach gradient of 2.8 percent prescribed for four-
engine airplanes is being reduced to 2.7 percent to obtain consistency in the differences between 
gradients applicable to twins and fours. 
 

A change is made to the “all-engines-operating landing climb” provisions which now 
require a 4.0 percent gradient of climb in the landing configuration.  On the premise that 
requiring the landing configuration during the climb after a balk is unduly conservative, 
consideration was given to a proposal to permit showing of compliance with the 4.0 percent 
gradient of climb in the configuration which would exist 5 seconds after the initiation of the 
climb.  Further study of this proposal indicated that such a rule would tend to introduce 
complications in design and lead to less favorable operating procedures which ultimately would 
not contribute to safety.  One of the most important factors in connection with this configuration 
is the response of the engines to throttle movement.  Therefore, there is a provision which 
requires that the power used in showing compliance with the climb gradient be that power or 
thrust attained 8 seconds after initiation of movement of the power controls to the take-off 
position from the minimum flight idle position.  In addition, for consistency with the procedures 
used for determining the landing distance, the speed limitation of 1.4 VS is reduced to 1.3 VS.   
Concern has been indicated to the effect that any reduction in the prescribed gradient of 1.0 
percent might not insure in all cases the ability of the airplane to continue a safe climb after a 
balk.  To provide a further safeguard, the take-off weight-altitude-temperature limitations (WAT 
limitations stemming from the application of the one-engine-inoperative take-off climb 
requirements) are being made applicable to the maximum landing weight at the airport of 
landing.  In the past, the landing weight limitations were applicable to the airport of destination 
but not to the weather alternates.  This regulation makes both the take-off weight and landing 
weight limitations equally applicable to the airport of destination and the weather alternates.  In 
view of the aforementioned changes, a reduction of the required climb gradient from 4.0 to 3.2 
percent is justified and included in this regulation. 
 

In addition to the substantive changes which have been discussed, there are three 
significant changes of a clarifying nature.  The first deals with the determination of the landing 
distance as affected by devices or means other than wheel brakes.  There is included a provision 
similar to the one applicable to the accelerate-stop distance for application to the landing 
distance.  This provision permits the use of means other than wheel brakes in the determination 
of the landing distance.  Additionally, there is a change to the provision which requires in some 
cases the determination of the landing distance with one engine inoperative.  It is believed that 
the new requirement expresses the intent more clearly.  One of the more obvious applications of 
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this provision is in respect of turbo-propeller airplanes.  Such airplanes usually are landed with 
the propellers in a relatively high drag position.  If one of the engines becomes inoperative, its 
propeller would be expected to be in a relatively low drag position with the consequence of a 
longer landing distance than with all engines operating.  In such a case it is required that the 
landing distance be determined with one engine inoperative unless use could be made by the 
crew of other means (e.g., reverse thrust not otherwise considered in determining the landing 
distance) which would reduce the landing distance at least to that determined for all-engine 
operation. The second clarification being included deals with the provision setting forth the 
procedures which must be included in the AFM.  This provision in SR-422 does not make clear 
what procedures are involved and whether the procedures are considered to be limitations on the 
operation of the airplane.  The clarification in language specifies that the procedures which are 
included with the performance limitations shall be considered only as guidance material. 
 

The third clarification concerns the applicability of the performance limitations 
prescribed in SR-422.  These consist of the “certificate limitations” and the “operating 
limitations.” The former relate to maximum take-off and landing weights, minimum take-off 
distances, accelerate-stop distances, and the operational limits imposed upon the airplane.  These 
limitations, being part of the conditions of the type and airworthiness certificates, must be 
complied with at all times irrespective of the type of operation being conducted (e.g., air carrier, 
private, cargo).  The “operating limitations,” distinct from the “certificate limitations,” are only 
applicable when required by the operating parts of the regulations (Parts 40, 41, and 42 require 
compliance for passenger operations).  Although it appeared that previous Board 
pronouncements regarding this general principle as well as the explanation contained in the 
preamble to SR-422 would make the issue quite clear, it has come to the Board’s attention that 
there is still some misunderstanding of this matter.  Apparently this misunderstanding stems 
from the fact that SR- 422 prescribes operating rules for air carrier operations which contain both 
the “certificate limitations” and the “operating limitations” while no prescription is given to non-
air-carrier operations; thus giving an impression that not even the “certificate limitations” are 
applicable to non-air-carriers.  The inclusion of “certificate limitations” for air carrier operations 
with the “operating limitations” was meant only to provide the operators with the convenience of 
having together the complete prescription of the applicable performance limitations, 
notwithstanding that such an inclusion, in fact, duplicates the general requirement of compliance 
with the “certificate limitations” contained in the AFM.  In view of the possible 
misunderstanding which might exist from the aforementioned inclusion, there are included in 
this regulation the same “certificate limitations” for application to all operations under the 
provisions of part 43 of the Civil Air Regulations. 
 

In addition, other changes of a minor nature are included herein, the most significant of 
which is the generalization of the stall speed VS, eliminating reference to VS0 and VS1. 
 

Of the changes to SR-422 made in this regulation, there are a number which might 
require further consideration as studies continue and as additional experience is gained with the 
application of these new rules.  Several of these involve new concepts with which U.S. operators 
have had little or no experience.  These entail the requirements relative to unbalanced field 
lengths with respect to clearways, to the rotational speed, and to the all-engine take-off distance.  
Strong representation has been made to the Board to the effect that the numerical factors 
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applicable to the aforementioned rules are too high and should be reduced pending further 
experience.  The Board considers that it would not be in the public interest to reduce any of these 
factors until such time as further experience indicates that they are in fact overly conservative.  
Realizing, however, that these issues are of considerable importance in prescribing a practicable 
level of performance, the Board stands ready to reconsider the relevant provisions of this 
regulation at such time as substantiating information is received. 
 

There are areas other than those previously mentioned where additional refinement of 
details may be advisable.  This is so particularly in the case of the requirements pertaining to the 
landing stage of flight, to the take-off lateral clearances, and to the two-engine inoperative en 
route gradient margin.  It is anticipated that, after further study of the regulation and especially 
after its application in the design, certification, and operation of forthcoming turbine-powered 
airplanes, the desirability of changes may become more apparent.  It is the intent of the Board to 
consider without delay such changes as might be found necessary.  Only after the provisions of 
this Special Civil Air Regulation are reasonably verified by practical application will the Board 
consider incorporating them on a more permanent basis into Parts 4b, 40, 41, 42, and 43 of the 
Civil Air Regulations. 
 

This Special Civil Air Regulation is not intended to compromise the authority of the 
Administrator under section 4b.10 to impose such special conditions as he finds necessary in any 
particular case to avoid unsafe design features and otherwise to insure equivalent safety. 
 

Interested persons have been afforded an opportunity to participate in the making of this 
regulation (23 F.R.2139), and due consideration has been given to all relevant matter presented. 
 

In consideration of the foregoing, the Civil Aeronautics Board hereby makes and 
promulgates the following Special Civil Air Regulation, effective July 2, 1958: 
 

Contrary provisions of the Civil Air Regulations notwithstanding, all turbine-powered 
transport category airplanes for which a type certificate is issued after August 27, 1957, shall 
comply with Special Civil Air Regulation No. SR-422 or, alternatively, with the following 
provisions, except that those airplanes for which a type certificate is issued after September 
30,1958, shall comply with the following provisions: 
 

1. The provisions of part 4b of the Civil Air Regulations, effective on the date of 
application for type certificate; and such of the provisions of all subsequent amendments to part 
4b, in effect prior to August 27, 1957, as the Administrator finds necessary to insure that the 
level of safety of turbine-powered airplanes is equivalent to that generally intended by part 4b. 
 

2. In lieu of sections 4b.110 through 4b.125, and 4b.743 of part 4b of the Civil Air 
Regulations, the following shall be applicable: 
 
 

Performance 
 
4T.110 General.  
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 (a) The performance of the airplane shall be determined and scheduled in accordance with, 
and shall meet the minima prescribed by, the provisions of sections 4T.110 through 4T.123.  The 
performance limitations, information, and other data shall be given in accordance with section 
4T.743.  
 
 (b) Unless otherwise specifically prescribed, the performance shall correspond with 
ambient atmospheric conditions and still air.  Humidity shall be accounted for as specified in 
paragraph (c) of this section.  
 
 (c) The performance as affected by engine power and/or thrust shall be based on a relative 
humidity of 80 percent at and below standard temperatures and on 34 percent at and above 
standard temperatures plus 50° F.  Between these two temperatures the relative humidity shall 
vary linearly.  
 
 (d) The performance shall correspond with the propulsive thrust available under the 
particular ambient atmospheric conditions, the particular flight condition, and the relative 
humidity specified in paragraph (c) of this section.  The available propulsive thrust shall 
correspond with engine power and/or thrust not exceeding the approved power and/or thrust less 
the installational losses and less the power and/or equivalent thrust absorbed by the accessories 
and services appropriate to the particular ambient atmospheric conditions and the particular 
flight condition.  
 
4T.111 Airplane configuration, speed, power, and/or thrust; general.  
 
 (a) The airplane configuration (setting of wing and cowl flaps, air brakes, landing gear, 
propeller, etc.), denoted respectively as the take-off, en route, approach, and landing 
configurations, shall be selected by the applicant except as otherwise prescribed.  
 
 (b) It shall be acceptable to make the airplane configurations variable with weight, altitude, 
and temperature, to an extent found by the Administrator to be compatible with operating 
procedures required in accordance with paragraph (c) of this section.  
 
 (c) In determining the accelerate-stop distances, take-off flight paths, take-off distances, 
and landing distances, changes in the airplane’s configuration and speed, and in the power and/or 
thrust shall be in accordance with procedures established by the applicant for the operation of the 
airplane in service, except as otherwise prescribed.  In addition, procedures shall be established 
for the execution of balked landings and missed approaches associated with the conditions 
prescribed in section 4T.119 and 4T.120(d), respectively.  All procedures shall comply with the 
provisions of subparagraphs (1) through (3) of this paragraph.  
 
  (1) The Administrator shall find that the procedures can be consistently executed in 
service by crews of average skill.  
 
  (2) The procedures shall not involve methods or the use of devices which have not 
been proven to be safe and reliable.  
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  (3) Allowance shall be made for such time delays in the execution of the procedures as 
may be reasonably expected to occur during service.  
 
4T.112 Stalling speeds.  
 
 (a) The speed VS, shall denote the calibrated stalling speed, or the minimum steady flight 
speed at which the airplane is controllable, in knots, with:  
 
  (1) Zero thrust at the stalling speed, or engines idling and throttles closed if it is shown 
that the resultant thrust has no appreciable effect on the stalling speed;  
 
  (2) If applicable, propeller pitch controls in the position necessary for compliance with 
subparagraph (1) of this paragraph; the airplane in all other respects (flaps, landing gear, etc.) in 
the particular configuration corresponding with that in connection with which VS is being used;  
 
  (3) The weight of the airplane equal to the weight in connection with which VS is being 
used to determine compliance with a particular requirement;  
 
  (4) The c.g. in the most unfavorable position within the allowable range.  
 
 (b) The stall speed defined in this section shall be the minimum speed obtained in flight 
tests conducted in accordance with the procedure of subparagraphs (1) and (2) of this paragraph.  
 
  (1) With the airplane trimmed for straight flight at a speed of l.4 VS and from a speed 
sufficiently above the stalling speed to insure steady conditions, the elevator control shall be 
applied at a rate such that the airplane speed reduction does not exceed one knot per second.  
 
  (2) During the test prescribed in subparagraph (1) of this paragraph, the flight 
characteristics provisions of section 4b.160 of part 4b of the Civil Air Regulations shall be 
complied with.  
 
4T.113 Take-off; general. 
 
 (a) The take-off data in sections 4T.114 through 4T.117 shall be determined under the 
conditions of subparagraphs (1) and (2) of this paragraph.  
 
  (1) At all weights, altitudes, and ambient temperatures within the operational limits 
established by the applicant for the airplane.  
 
  (2) In the configuration for take-off (see sec. 4T.111).  
 
 (b) Take-off data shall be based on a smooth, dry, hard-surfaced runway and shall be 
determined in such a manner that reproduction of the performance does not require exceptional 
skill or alertness on the part of the pilot.  In the case of seaplanes or float planes, the take-off 
surface shall be smooth water, while for skiplanes it shall be smooth dry snow.  In addition, the 
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take-off data shall be corrected in accordance with subparagraphs (1) and (2) of this paragraph 
for wind and for runway gradients within the operational limits established by the applicant for 
the airplane.  
 
  (1) Not more than 50 percent of nominal wind components along the take-off path 
opposite to the direction of take-off, and not less than 150 percent of nominal wind components 
along the take-off path in the direction of take-off.  
 
  (2) Effective runway gradients.  
 
4T.114 Take-off speeds.  
 
 (a) The critical-engine-failure speed V1, in terms of calibrated air speed, shall be selected 
by the applicant, but shall not be less than the minimum speed at which controllability by 
primary aerodynamic controls alone is demonstrated during the take-off run to be adequate to 
permit proceeding safely with the take-off using average piloting skill, when the critical engine 
is suddenly made inoperative.  
 
 (b) The take-off safety speed V2, in terms of calibrated air speed, shall be selected by the 
applicant so as to permit the gradient of climb required in section 4T.120 (a) and (b), but it shall 
not be less than:  
 
  (1) 1.2 VS for two-engine propeller-driven airplanes and for airplanes without 
propellers which have no provisions for obtaining a significant reduction in the one-engine-
inoperative power-on stalling speed;  
 
  (2) 1.15 VS for propeller-driven airplanes having more than two engines and for 
airplanes without propellers which have provisions for obtaining a significant reduction in the 
one-engine-inoperative power-on stalling speed;  
 
  (3) 1.10 times the minimum control speed VMC, established in accordance with section 
4b.133 of part 4b of the Civil Air Regulations;  
 
  (4) The rotation speed VR plus the increment in speed attained in compliance with 
section 4T.116(e).  
 
 (c) The minimum rotation speed VR, in terms of calibrated air speed, shall be selected by 
the applicant, except that it shall not be less than:  
 
  (1) The speed V1;  
 
  (2) A speed equal to 95 percent of the highest speed obtained in compliance with 
subparagraph (1) or (2), whichever is applicable, and with subparagraph (3) of paragraph (b) of 
this section;  
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  (3) A speed which permits the attainment of the Speed V2 prior to reaching a height of 
35 feet above the take-off surface as determined in accordance with section 4T.116(e);  
 
  (4) A speed equal to 110 percent of the minimum speed above which the airplane, with 
all engines operating, can be made to lift off the ground and to continue the take-off without 
displaying any hazardous characteristics.  
 
4T.115 Accelerate-stop distance.  
 
 (a) The accelerate-stop distance shall be the sum of the following:  
 
  (1) The distance required to accelerate the airplane from a standing start to the speed 
V1;  
 
  (2) Assuming the critical engine to fail at the speed V1, the distance required to bring 
the airplane to a full stop from the point corresponding with the speed V1.  
 
 (b) In addition to, or in lieu of, wheel brakes, the use of other braking means shall be 
acceptable in determining the accelerate-stop distance, provided that such braking means shall 
have been proven to be safe and reliable, that the manner of their employment is such that 
consistent results can be expected in service, and that exceptional skill is not required to control 
the airplane.  
 
 (c) The landing gear shall remain extended throughout the accelerate-stop distance.  
 
4T.116 Take-off path.   
 
The take-off path shall be considered to extend from the standing start to a point in the take-off 
where a height of 1,500 feet above the take-off surface is reached or to a point in the take-off 
where the transition from the take-off to the en route configuration is completed and a speed is 
reached at which compliance with section 4T.120(c) is shown, whichever point is at a higher 
altitude.  The conditions of paragraphs (a) through (i) of this section shall apply in determining 
the take-off path.  
 
 (a) The take-off path shall be based upon procedures prescribed in accordance with section 
4T.111(c).  
 
 (b) The airplane shall be accelerated on the ground to the speed V1 at which point the 
critical engine shall be made inoperative and shall remain inoperative during the remainder of 
the take-off.  Subsequent to attaining speed V1, the airplane shall be accelerated to speed V2.  
during which time it shall be permissible to initiate raising the nose gear off the ground at a 
speed not less than the rotation speed VR.  
 
 (c) Landing gear retraction shall not be initiated until the airplane becomes airborne.  
 
 (d) The slope of the airborne portion of the take-off path shall be positive at all points.  
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 (e) The airplane shall attain the speed V2 prior to reaching a height of 35 feet above the 
take-off surface and shall continue at a speed as close as practical to, but not less than, V2 until a 
height of 400 feet above the take-off surface is reached.  
 
 (f) Except for gear retraction and propeller feathering, the airplane configuration shall not 
be changed before reaching a height of 400 feet above the take-off surface.  
 
 (g) At all points along the take-off path starting at the point where the airplane first reaches 
a height of 400 feet above the take-off surface, the available gradient of climb shall not be less 
than 1.2 percent for two-engine airplanes and 1.7 percent for four-engine airplanes.  
 
 (h) The take-off path shall be determined either by a continuous demonstrated take-off, or 
alternatively, by synthesizing from segments the complete take-off path.  
 
 (i) If the take-off path is determined by the segmental method, the provisions of 
subparagraphs (1) through (4) of this paragraph shall be specifically applicable.  
 
  (1) The segments of a segmental take-off path shall be clearly defined and shall be 
related to the distinct changes in the configuration of the airplane, in power and/or thrust, and in 
speed.  
 
  (2) The weight of the airplane, the configuration, and the power and/or thrust shall be 
constant throughout each segment and shall correspond with the most critical condition 
prevailing in the particular segment.  
 
  (3) The segmental flight path shall be based on the airplane’s performance without 
ground effect.  
 
  (4) Segmental take-off path data shall be checked by continuous demonstrated takeoffs 
to insure that the segmental path is conservative relative to the continuous path.  
 
4T.117 Take-off distances and take-off run.  
 

(a) Take-off distance.  The take-off distance shall be the greater of the distances established 
in accordance with subparagraphs (1) and (2) of this paragraph.  
 
  (1) The horizontal distance along the take-off path from the start of the take-off to the 
point where the airplane attains a height of 35 feet above the take-off surface, as determined in 
accordance with section 4T.116.  
 
  (2) A distance equal to 115 percent of the horizontal distance along the take-off path, 
with all engines operating, from the start of the take-off to the point where the airplane attains a 
height of 35 feet above the take-off surface, as determined by a procedure consistent with that 
established in accordance with section 4T.116.  
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 (b) Take-off run.  If the take-off distance is intended to include a clearway (see item 5 of 
this regulation), the take-off run shall be determined and shall be the greater of the distances 
established in accordance with subparagraphs (1) and (2) of this paragraph.  
 
  (1) The horizontal distance along the take-off path from the start of the take-off to a 
point equidistant between the point where the airplane first becomes airborne and the point 
where it attains a height of 35 feet above the take-off surface, as determined in accordance with 
section 4T.116.  
 
  (2) A distance equal to 115 percent of the horizontal distance along the take-off path, 
with all engines operating, from the start of the take-off to a point equidistant between the point 
where the airplane first becomes airborne and the point where it attains a height of 35 feet above 
the take-off surface, as determined by a procedure consistent with that established in accordance 
with section 4T.116.  
 
4T.117a  Take-off flight path.  
 
 (a) The take-off flight path shall be considered to begin at a height of 35 feet above the 
take-off surface at the end of the take-off distance as determined in accordance with section 
4T.117(a).  
 
 (b) The net take-off flight path data shall be determined in such a manner that they 
represent the airplane’s actual take-off flight paths, determined in accordance with paragraph (a) 
of this section, diminished by a gradient of climb equal to 1.0 percent.  
 
4T.118 Climb; general.  Compliance shall be shown with the climb requirements of sections 
4T.119 and 4T.120 at all weights, altitudes, and ambient temperatures, within the operational 
limits established by the applicant for the airplane.  The airplane’s c.g. shall be in the most 
unfavorable position corresponding with the applicable configuration.  
 
4T.119 All engine-operating landing climb.  In the landing configuration the steady gradient of 
climb shall not be less than 3.2 percent, with:  
 
 (a) All engines operating at the power and/or thrust which is available 8 seconds after 
initiation of movement of the power and/or thrust controls from the minimum flight idle to the 
take-off position;  
 
 (b) A climb speed not in excess of 1.3 VS.  
 
4T.120 One engine-inoperative climb.  
 
 (a) Take-off; landing gear extended.  In the take-off configuration existing at the point of 
the flight path where the airplane first becomes airborne, in accordance with section 4T.116 but 
without ground effect, the steady gradient of climb shall be positive for two-engine airplanes and 
shall not be less than 0.5 percent for four-engine airplanes, with:  
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  (1) The critical engine inoperative, the remaining engine(s) operating at the available 
take-off power and/or thrust existing in accordance with section 4T.116 at the time retraction of 
the airplane’s landing gear is initiated, unless subsequently a more critical power operating 
condition exists along the flight path prior to the point where the landing gear is fully retracted;  
 
  (2) The weight equal to the airplane’s weight existing in accordance with section 
4T.116 at the time retraction of the airplane’s landing gear is initiated;  
 
  (3) The speed equal to the speed V2.  
 
 (b) Take-off; landing gear retracted.  In the take-off configuration existing at the point of 
the flight path where the airplane’s landing gear is fully retracted, in accordance with section 
4T.116 but without ground effect, the steady gradient of climb shall not be less than 2.5 percent 
for two-engine airplanes and not less than 3.0 percent for four-engine airplanes, with:  
 
  (1) The critical engine inoperative, the remaining engine(s) operating at the available 
take-off power and/or thrust existing in accordance with section 4T.116 at the time the landing 
gear is fully retracted, unless subsequently a more critical power operating condition exists along 
the flight path prior to the point where a height of 400 feet above the take-off surface is reached;  
 
  (2) The weight equal to the airplane’s weight existing in accordance with section 
4T.116 at the time the airplane’s landing gear is fully retracted.  
 
  (3) The speed equal to the speed V2.  
 
 (c) Final take-off.  In the en route configuration, the steady gradient of climb shall not be 
less than 1.2 percent for two-engine airplanes and not less than 1.7 percent for four-engine 
airplanes, at the end of the take-off path as determined by section 4T.116, with:  
 
  (1) The critical engine inoperative, the remaining engine(s) operating at the available 
maximum continuous power and/or thrust;  
 
  (2) The weight equal to the airplane’s weight existing in accordance with section 
4T.116 at the end of the take-off path;  
 
  (3) The speed equal to not less than 1.25 VS. 
 
 (d) Approach.  In the approach configuration such that the corresponding VS for this 
configuration does not exceed 110 percent of the VS, corresponding with the related landing 
configuration, the steady gradient of climb shall not be less than 2.2 percent for two-engine 
airplanes and not less than 2.7 percent for four-engine airplanes with:  
 
  (1) The critical engine inoperative, the remaining engine(s) operating at the available 
take-off power and/or thrust;  
 
  (2) The weight equal to the maximum landing weight;  
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  (3) A climb speed established by the applicant in connection with normal landing 
procedures, except that it shall not exceed 1.5 VS (see sec. 4T.111(c)).  
 
4T.121 En route flight paths.  With the airplane in the en route configuration, the flight paths 
prescribed in paragraphs (a) and (b) of this section shall be determined at all weights, altitudes, 
and ambient temperatures within the limits established by the applicant for the airplane.  
 
 (a) One engine inoperative.  The one-engine-inoperative net flight path data shall be 
determined in such a manner that they represent the airplane’s actual climb performance 
diminished by a gradient of climb equal to 1.1 percent for two-engine airplanes and 1.6 percent 
for four-engine airplanes.  It shall be acceptable to include in these data the variation of the 
airplane’s weight along the flight path to take into account the progressive consumption of fuel 
and oil by the operating engine(s).  
 
 (b) Two engines inoperative.  For airplanes with four engines, the two-engine-inoperative 
net flight path data shall be determined in such a manner that they represent the airplane’s actual 
climb performance diminished by a gradient of climb equal to 0.5 percent.  It shall be acceptable 
to include in these data the variation of the airplane’s weight along the flight path to take into 
account the progressive consumption of fuel and oil by the operating engines.  
 
 (c) Conditions.  In determining the flight paths prescribed in paragraphs (a) and (b) of this 
section, the conditions of subparagraphs (1) through (4) of this paragraph shall apply.  
 
  (1) The airplane’s c.g. shall be in the most unfavorable position.  
 
  (2) The critical engine(s) shall be inoperative, the remaining engine(s) operating at the 
available maximum continuous power and/or thrust.  
 
  (3) Means for controlling the engine cooling air supply shall be in the position which 
provides adequate cooling in the hot-day condition.  
 
  (4) The speed shall be selected by the applicant.  
 
4T.122 Landing distance.  The landing distance shall be the horizontal distance required to land 
and to come to a complete stop (to a speed of approximately 3 knots in the case of seaplanes or 
float planes) from a point at a height of 50 feet above the landing surface.  Landing distances 
shall be determined for standard temperatures at all weights, altitudes, and winds within the 
operational limits established by the applicant for the airplane.  The conditions of paragraphs (a) 
through (g) of this section shall apply.  
 
 (a) The airplane shall be in the landing configuration.  During the landing, changes in the 
airplane’s configuration, in power and/or thrust, and in speed shall be in accordance with 
procedures established by the applicant for the operation of the airplane in service.  The 
procedures shall comply with the provisions of section 4T.111(c).  
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 (b) The landing shall be preceded by a steady gliding approach down to the 50-foot height 
with a calibrated air speed of not less than 1.3 VS.  
 
 (c) The landing distance shall be based on a smooth, dry, hard-surfaced runway, and shall 
be determined in such a manner that reproduction does not require exceptional skill or alertness 
on the part of the pilot.  In the case of seaplanes or float planes, the landing surface shall be 
smooth water, while for skiplanes it shall be smooth dry snow.  During landing, the airplane 
shall not exhibit excessive vertical acceleration, a tendency to bounce, nose over, ground loop, 
porpoise, or water loop.  
 
 (d) The landing distance shall be corrected for not more than 50 percent of nominal wind 
components along the landing path opposite to the direction of landing and not less than 150 
percent of nominal wind components along the landing path in the direction of landing.  
 
 (e) During landing, the operating pressures on the wheel braking system shall not be in 
excess of those approved by the manufacturer of the brakes, and the wheel brakes shall not be 
used in such a manner as to produce excessive wear of brakes and tires.  
 
 (f) In addition to, or in lieu of, wheel brakes, the use of other braking means shall be 
acceptable in determining the landing distance, provided such braking means shall have been 
proven to be safe and reliable, that the manner of their employment is such that consistent results 
can be expected in service, and that exceptional skill is not required to control the airplane.  
 
 (g) If the characteristics of a device (e.g., the propellers) dependent upon the operation of 
any of the engines noticeably increase the landing distance when the landing is made with the 
engine inoperative, the landing distance shall be determined with the critical engine inoperative 
unless the Administrator finds that the use of compensating means will result in a landing 
distance not greater than that attained with all engines operating.  
 
4T.123 Limitations and information.  
 
 (a) Limitations.  The performance limitations on the operation of the airplane shall be 
established in accordance with subparagraphs (1) through (4) of this paragraph.  (See also Sec. 
4T.743.)  
 
  (1) Take-off weights.  The maximum take-off weights shall be established at which 
compliance is shown with the generally applicable provisions of this regulation and with the 
take-off climb provisions prescribed in section 4T.120 (a), (b), and (c) for altitudes and ambient 
temperatures within the operational limits of the airplane (see subparagraph (4) of this 
paragraph).  
 
  (2) Landing weights.  The maximum landing weights shall be established at which 
compliance is shown with the generally applicable provisions of this regulation and with the 
landing and take-off climb provisions prescribed in sections 4T.119 and 4T.120 for altitudes and 
ambient temperatures within the operational limits of the airplane (see subparagraph (4) of this 
paragraph).  
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  (3) Accelerate-stop distance, take-off distance, and take-off run.  The minimum 
distances required for take-off shall be established at which compliance is shown with the 
generally applicable provisions of this regulation and with sections 4T.115 and 4T.117(a), and 
with 4T.117(b) if the take-off distance is intended to include a clearway, for weights, altitudes, 
temperatures, wind components, and runway gradients, within the operational limits of the 
airplane (see subparagraph (4) of this paragraph).  
 
  (4) Operational limits.  The operational limits of the airplane shall be established by 
the applicant for all variable factors required in showing compliance with this regulation (weight, 
altitude, temperature, etc.).  (See secs. 4T.113 (a)(1) and (b), 4T.118, 4T.121, and 4T.122.)  
 
 (b) Information.  The performance information on the operation of the airplane shall be 
scheduled in compliance with the generally applicable provisions of this regulation and with 
sections 4T.117a(b), 4T.121, and 4T.122 for weights, altitudes, temperatures, wind components, 
and runway gradients, as these may be applicable, within the operational limits of the airplane 
(see subparagraph (a)(4) of this section).  In addition, the performance information specified in 
subparagraphs (1) through (3) of this paragraph shall be determined by extrapolation and 
scheduled for the ranges of weights between the maximum landing and maximum take-off 
weights established in accordance with subparagraphs (a) (1) and (a) (2) of this section.  (See 
also sec. 4T.743.)  
 
  (1) Climb in the landing configuration (see sec. 4T.119);  
 
  (2) Climb in the approach configuration (see sec. 4T.120(d));  
 
  (3) Landing distance (see sec. 4T.122).  
 
 

Airplane Flight Manual 
 
4T.743 Performance limitations, information, and, other data.  
 
 (a) Limitations.  The airplane’s performance limitations shall be given in accordance with 
section 4T.123(a).  
 
 (b) Information.  The performance information prescribed in section 4T.123(b) for the 
application of the operating rules of this regulation shall be given together with descriptions of 
the conditions, air speeds, etc., under which the data were determined.  
 
 (c) Procedures.  Procedures established in accordance with section 4T.111(c) shall be given 
to the extent such procedures are related to the limitations and information set forth in 
accordance with paragraphs (a) and (b) of this section.  Such procedures, in the form of guidance 
material, shall be included with the relevant limitations or information, as applicable.  
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 (d) Miscellaneous.  An explanation shall be given of significant or unusual flight or ground 
handling characteristics of the airplane.  

 
 3. In lieu of sections 40.70 through 40.78, 41.27 through 41.36(d), and 42.70 through 

42.83, of Parts 40, 41, and 42 of the Civil Air Regulations, respectively, the following shall be 
applicable: 
 

Operating Rules 
 
40T.80 Transport category airplane operating limitations.  
 
 (a) In operating any passenger-carrying transport category airplane certificated in 
accordance with the performance requirements of this regulation, the provisions of sections 
40T.80 through 40T.84 shall be complied with, unless deviations therefrom are specifically 
authorized by the Administrator on the ground that the special circumstances of a particular case 
make a literal observance of the requirements unnecessary for safety.  
 
 (b) The performance data in the AFM shall be applied in determining compliance with the 
provisions of sections 40T.81 through 40T.84.  Where conditions differ from those for which 
specific tests were made, compliance shall be determined by approved interpolation or 
computation of the effects of changes in the specific variables if such interpolations or 
computations give results substantially equaling in accuracy the results of a direct test.  
 
40T.81 Airplane’s certificate limitations.  
 
 (a) No airplane shall be taken off at a weight which exceeds the take-off weight specified in 
the AFM for the elevation of the airport and for the ambient temperature existing at the time of 
the take-off.  (See secs. 4T.123(a)(1) and 4T.743(a).)  
 
 (b) No airplane shall be taken off at a weight such that, allowing for normal consumption of 
fuel and oil in flight to the airport of destination and to the alternate airports, the weight on 
arrival will exceed the landing weight specified in the AFM for the elevation of each of the 
airports involved and for the ambient temperatures anticipated at the time of landing.  (See secs. 
4T.123(a)(2) and 4T.743(a).  
 
 (c) No airplane shall be taken off at a weight which exceeds the weight shown in the AFM 
to correspond with the minimum distances required for take-off.  These distances shall 
correspond with the elevation of the airport, the runway to be used, the effective runway 
gradient, and the ambient temperature and wind component existing at the time of take-off.  (See 
secs. 4T.123(a)(3) and 4T.743(a).) If the take-off distance includes a clearway as defined in Item 
5 of this regulation, the take-off distance shall not include a clearway distance greater than one-
half of the take-off run.  
 
 (d) No airplane shall be operated outside the operational limits specified in the AFM.  (See 
secs. 4T.123(a)(4) and 42.743(a).)  
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40T.82 Take-off obstacle clearance limitations.  No airplane shall be taken off at a weight in 
excess of that shown in the AFM to correspond with a net take-off flight path which clears all 
obstacles either by at least a height of 35 feet vertically or by at least 200 feet horizontally within 
the airport boundaries and by at least 300 feet horizontally after passing beyond the boundaries.  
In determining the allowable deviation of the flight path in order to avoid obstacles by at least 
the distances prescribed, it shall be assumed that the airplane is not banked before reaching a 
height of 50 feet as shown by the take-off path data in the AFM, and that a maximum bank 
thereafter does not exceed 15 degrees.  The take-off path considered shall be for the elevation of 
the airport, the effective runway gradient, and for the ambient temperature and wind component 
existing at the time of take-off.  (See secs. 4T.123(b) and 4T.743(b).)  
 
40T.83 En route limitations.  
 
 (a) One engine inoperative.  No airplane shall be taken off at a weight in excess of that 
which, according to the one-engine-inoperative en route net flight path data shown in the AFM, 
will permit compliance with either subparagraph (1) or subparagraph (2) of this paragraph at all 
points along the route.  The net flight path used shall be for the ambient temperatures anticipated 
along the route.  (See secs. 4T.123(b) and 4T.743(b).)  
 
  (1) The slope of the net flight path shall be positive at an altitude of at least 1,000 feet 
above all terrain and obstructions along the route within 5 miles on either side of the intended 
track.  
 
  (2) The net flight path shall be such as to permit the airplane to continue flight from the 
cruising altitude to an alternate airport where a landing can be made in accordance with the 
provisions of section 40T.84(b), the net flight path clearing vertically by at least 2,000 feet all 
terrain and obstructions along the route within 5 miles on either side of the intended track.  The 
provisions of subdivisions (i) through (vii) of this subparagraph shall apply.  
 
   (i) The engine shall be assumed to fail at the most critical point along the route.  
 
   (ii) The airplane shall be assumed to pass over the critical obstruction following 
engine failure at a point no closer to the critical obstruction than the nearest approved radio 
navigational fix, except that the Administrator may authorize a procedure established on a 
different basis where adequate operational safeguards are found to exist.  
 
   (iii) The net flight path shall have a positive slope at 1,500 feet above the airport 
used as the alternate.  
 
   (iv) An approved method shall be used to account for winds which would 
otherwise adversely affect the flight path.  
 
   (v) Fuel jettisoning shall be permitted if the Administrator finds that the operator 
has an adequate training program, proper instructions are given to the flight crew, and all other 
precautions are taken to insure a safe procedure.  
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   (vi) The alternate airport shall be specified in the dispatch release and shall meet 
the prescribed weather minima.  
 
   (vii) The consumption of fuel and oil after the engine becomes inoperative shall be 
that which is accounted for in the net flight path data shown in the AFM.  
 
 (b) Two engines inoperative.  No airplane shall be flown along an intended route except in 
compliance with either subparagraph (1) or subparagraph (2) of this paragraph.  
 
  (1) No place along the intended track shall be more than 90 minutes away from an 
airport at which a landing can be made in accordance with the provisions of section 4OT.84(b), 
assuming all engines to be operating at cruising power.  
 
  (2) No airplane shall be taken off at a weight in excess of that which, according to the 
two-engine-inoperative en route net flight path data shown in the AFM, will permit the airplane 
to continue flight from the point where two engines are assumed to fail simultaneously to an 
airport where a landing can be made in accordance with the provisions of section 40T.84(b), the 
net flight path having a positive slope at an altitude of at least 1,000 feet above all terrain and 
obstructions along the route within 5 miles on either side of the intended track or at an altitude of 
2,000 feet, whichever is higher.  The net flight path considered shall be for the ambient 
temperatures anticipated along the route.  The provisions of subdivisions (i) through (iii) of this 
subparagraph shall apply.  (See secs. 4T.123(b) and 4T.743(b).)  
 
   (i) The two engines shall be assumed to fail at the most critical point along the 
route.  
 
   (ii) The airplane’s weight at the point where the two engines are assumed to fail 
shall be considered to be not less than that which would include sufficient fuel to proceed to the 
airport and to arrive there at an altitude of at least 1,500 feet directly over the landing area and 
thereafter to fly for 15 minutes at cruise power and/or thrust.  
 
   (iii) The consumption of fuel and oil after the engines become inoperative shall be 
that which is accounted for in the net flight path data shown in the AFM.  
 
40T.84 Landing limitations.  
 
 (a) Airport of destination.  No airplane shall be taken off at a weight in excess of that 
which, in accordance with the landing distances shown in the AFM for the elevation of the 
airport of intended destination and for the wind conditions anticipated there at the time of 
landing, would permit the airplane to be brought to rest at the airport of intended destination 
within 60 percent of the effective length of the runway from a point 50 feet directly above the 
intersection of the obstruction clearance plane and the runway.  The weight of the airplane shall 
be assumed to be reduced by the weight of the fuel and oil expected to be consumed in flight to 
the airport of intended destination.  Compliance shall be shown with the conditions of 
subparagraphs (1) and (2) of this paragraph.  (See secs. 4T.123(b) and 4T.743(b).)  
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  (1) It shall be assumed that the airplane is landed on the most favorable runway and 
direction in still air.  
 
  (2) It shall be assumed that the airplane is landed on the most suitable runway 
considering the probable wind velocity and direction and taking due account of the ground 
handling characteristics of the airplane and of other conditions (i.e., landing aids, terrain, etc.).  
If full compliance with the provisions of this subparagraph is not shown, the airplane may be 
taken off if an alternate airport is designated which permits compliance with paragraph (b) of 
this section.  
 
 (b) Alternate airport.  No airport shall be designated as an alternate airport in a dispatch 
release unless the airplane at the weight anticipated at the time of arrival at such airport can 
comply with the provisions of paragraph (a) of this section, provided that the airplane can be 
brought to rest within 70 percent of the effective length of the runway.  
 

4.  In lieu of section 43.11 of part 43 of the Civil Air Regulations, the following shall be 
applicable: 
 
43T.11 Transport category airplane weight limitations.  The performance data in the AFM 
shall be applied in determining compliance with the following provisions:  
 
 (a) No airplane shall be taken off at a weight which exceeds the take-off weight specified in 
the AFM for the elevation of the airport and for the ambient temperature existing at the time of 
the take-off.  (See secs. 4T.123(a)(1) and 4T.743(a).)  
 
 (b) No airplane shall be taken off at a weight such that, allowing for normal consumption of 
fuel and oil in flight to the airport of destination and to the alternate airports, the weight on 
arrival will exceed the landing weight specified in the AFM for the elevation of each of the 
airports involved and for the ambient temperatures anticipated at the time of landing.  (See secs. 
4T.123(a)(2) and 4T.743(a).)  
 
 (c) No airplane shall be taken off at a weight which exceeds the weight shown in the AFM 
to correspond with the minimum distances required for take-off.  These distances shall 
correspond with the elevation of the airport, the runway to be used, the effective runway 
gradient, and the ambient temperature and wind component existing at the time of take-off.  (See 
secs. 4T.123(a)(3) and 4T.743(a).)  If the take-off distance includes a clearway as defined in 
Item 5 of this regulation, the take-off distance shall not include a clearway distance greater than 
one-half of the take-off run.  
 
 (d) No airplane shall be operated outside the operational limits specified in the AFM.  (See 
secs. 4T.123(a)(4) and 4T.743(a).)  
 

5.  The following definitions shall apply:  
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Clearway.  A clearway is an area beyond the airport runway not less than 300 feet on either side 
of the extended center line of the runway, at an elevation no higher than the elevation at the end 
of the runway, clear of all fixed obstacles, and under the control of the airport authorities. 
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Special Civil Air Regulation No. SR-422B 

 
Effective: July 9, 1959 

Issued: July 9, 1959 
 

Turbine Powered Transport Category Airplane of Current Design 
 

Special Civil Air Regulation No. SR-422, effective August 27, 1957, prescribes 
requirements applicable to the type certification and operation of turbine-powered transport 
category airplanes for which a type certificate is issued after August 27, 1957.  Special Civil Air 
Regulation No. SR-422A, effective July 2, 1958, included substantive changes to SR-422 and 
was made applicable to all turbine-powered transport category airplanes for which a type 
certificate is issued after September 30, 1958. 
 

This Special Civil Air Regulation makes further changes to the airworthiness rules for 
turbine-powered transport category airplanes to be applicable to all such airplanes for which a 
type certificate is issued after August 29, 1959.  These changes were proposed in Draft Release 
No.58-1 C (24 F.R. 128) by the Civil Aeronautics Board in connection with the 1958 Annual 
Airworthiness Review.  The amendments herein have been adopted after careful consideration of 
all the discussion and comment received thereon. 
 

Substantive and minor changes have been made to the provisions of SR-422A.  For ease 
in identification they are listed as follows: 
 

(a) Substantive changes: introductory paragraphs; 4T.114 (b), (c), (d), (e), and (f); 
4T.115(d); 4T.117a(b); 4T.120(a)(3), (b), and (d); 40T.81(c) ; 43T.11(c); and item 5 (a) and (b). 
 

(b) Minor changes; item 2; 4T.112 (title), (b)(1), (c), (d), and (e); 4T.113(b); 
4T.116(i)(4); 4T.117(b) (1) and (2); 4T.120(a); 4T.121; 4T.122(d) ; 4T.123(a); 40T.82; and 
40T.83. 
 

Pertinent background information to this regulation is contained in the preambles to SR- 
422 and SR-422A.  Following is a discussion of important issues relevant to the changed 
provisions contained herein. 
 

One of the most important changes being introduced concerns the rotation speed VR of 
the airplane during takeoff (4T.114).  Experience gained in the certification of airplanes under 
the provisions of SR-422 and SR-422A indicates that relating VR to the stall speed is not 
essential and might unduly penalize airplanes with superior flying qualities.  It has been found 
that the primary limitations on VR should be in terms of a margin between the actual lift-off 
speeds VLOF and the minimum unstick speed VMU at which the airplane can proceed safely with 
the takeoff.  The provisions contained herein require that VR speeds be established to be 
applicable to takeoffs with one engine inoperative as well as with all engines operating.  The 
VMU speeds can be established from free air data provided that the data are verified by ground 
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takeoff tests.  Certain safeguards are included in conjunction with the establishment of VR speeds 
to ensure that takeoffs in service can be made with consistent safety. 
 

A change is being introduced to the provision in 4T.117a(b) concerning the manner in 
which the net takeoff flight path is obtained.  In accordance with this provision as contained in 
SR-422A, the net takeoff flight path would have a negative slope throughout the acceleration 
segment.  Since this segment usually represents level flight easily controlled by reference to the 
normal flight instruments, a significant reduction in the flight path’s gradient would not be 
expected.  For these reasons, the provision is being changed to permit an equivalent reduction in 
acceleration in lieu of a reduction in gradient. 
 

Section 4T.117a(b) is being amended additionally by changing the value of gradient 
margin in the net flight path for two-engine airplanes from 1.0 percent to 0.8 percent.  The value 
for four engine airplanes remains 1.0 percent.  Differentiation in gradient values in the net flight 
path between two and four-engine airplanes is consistent with the differentiation in the climb 
gradients for the takeoff, enroute, and approach stages of flight.  Statistical analysis substantiates 
the specific reduction of the net flight path gradient to a value of 0.8 percent.  Correlatively, a 
reevaluation of the climb gradients for twin-engine airplanes in the second segment takeoff and 
in the approach climb indicates that the respective values should be 2.4 percent and 2.1 percent 
and these changes are being made in 4T.120 (b) and (d). 
 

A change is introduced in the conditions prescribed for meeting the climb gradient in the 
first segment takeoff climb (4T.120(a)), by changing the speed V2 to the speed VLOF.  The intent 
of this requirement is to use the speed at which the airplane lifts off the ground.  In SR-422 this 
speed was considered to be V2; however, in SR-422A and in this regulation the speed V2 is a 
higher speed which is reached at the end of the takeoff distance and no longer reflects the 
conditions pertinent to the first segment climb.  In making this change consistent with relevant 
changes in SR-422A and in this regulation, no consideration has been given to the 
appropriateness of the minimum climb gradient values prescribed for the first segment climb.  
These are subject to alteration if results of further studies so indicate. 
 

There is being introduced in this regulation the concept of “stopways,” the definition of 
which is contained in item 5(b).  Stopways have been used outside the United States in meeting 
the accelerate-stop distances in case of aborted takeoffs.  They are considered to result in more 
practical operations.  In order to ensure that they can be used without detrimental effects on 
safety, a provision is being included in 4T.115(d) requiring taking into account the surface 
characteristics of the stopways to be used in scheduling the accelerate-stop distances in the 
AFM. 
 

In conjunction with the introduction of stopways, there are changes being made in the 
definition of a “clearway” (item 5(a)).  One of the changes is to specify that a clearway begins at 
the end of the runway whether or not a stopway is being used.  Of the other changes, the most 
significant one expresses the clearway in terms of a clearway plane and permits this plane to 
have an upward slope of 1.25 percent.  In effect, this change will allow, in some cases, use of 
clearways which would not be allowed under the definition in SR-422A because of relatively 
small obstacles or slightly sloping terrain.  (See also 40T.81(c) and 43T.11(c).) 
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There are also included in this regulation a number of minor, editorial, or clarifying 

changes. 
 

Draft Release No. 58-1C included a proposal for expanding lateral obstacle clearances in 
the takeoff flight path.  Studies indicate that some expanding lateral clearances are necessary for 
safety in operations with all turbine-powered airplanes.  It appears, therefore, that an appropriate 
rule should be made applicable not only to airplanes certificated in accordance with this 
regulation, but also to those certificated in accordance with SR-422 and SR-422A.  Accordingly, 
no change is being made in this regulation to the lateral obstacle clearance provisions, instead, a 
Notice of Proposed Rule Making is now being prepared to amend SR-422, SR-422A, and this 
regulation, to require expanding lateral obstacle clearances for all airplanes certificated 
thereunder. 
 

This Special Civil Air Regulation is not intended to compromise the authority of the 
Administrator under section 4b.10 to impose such special conditions as are found necessary in 
any particular case to avoid unsafe design features and otherwise to ensure equivalent safety.   

 
Interested persons have been afforded an opportunity to participate in the making of this 

regulation (24 F.R. 128), and due consideration has been given to all relevant matter presented.   
 
This regulation does not require compliance until after August 29, 1959; however, since 

applicants for a type certificate for turbine-powered transport category airplanes may elect to 
show compliance with this regulation before that date, it is being made effective immediately.   

 
In consideration of the foregoing, the following Special Civil Air Regulation is hereby 

promulgated to become effective immediately: 
 

Contrary provisions of the Civil Air Regulations notwithstanding, all turbine-powered 
transport category airplanes for which a type certificate is issued after August 29, 1959, shall 
comply with the following requirements.  Applicants for a type certificate for a turbine-powered 
transport category airplane may elect and are authorized to meet the requirements of this Special 
Civil Air Regulation prior to August 29, 1959, in which case however, all of the following 
provisions must be complied with. 
 

1. The provisions of part 4b of the Civil Air Regulations, effective on the date of 
application for type certificate; and such of the provisions of all subsequent amendments to part 
4b, in effect prior to August 27, 1957, as the Administrator finds necessary to ensure that the 
level of safety of turbine-powered airplanes is equivalent to that generally intended by part 4b. 
 

2. In lieu of sections 4b.110 through 4b.125, 4b.183, and 4b.743 of part 4b of the 
Civil Air Regulations, the following shall be applicable: 
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Performance 

 
4T.110 General.  
 
 (a) The performance of the airplane shall be determined and scheduled in accordance with, 
and shall meet the minima prescribed by, the provision of sections 4T.110 through 4T.123.  The 
performance limitations, information, and other data shall be given in accordance with section 
4T.743.  
 
 (b) Unless otherwise specifically prescribed, the performance shall correspond with 
ambient atmospheric conditions and still air.  Humidity shall be accounted for as specified in 
paragraph (c) of this section.  
 
 (c) The performance as affected by engine power and, or thrust shall be based on a relative 
humidity of 80 percent at and below standard temperatures and on 34 percent at and above 
standard temperatures plus 50° F.  Between these two temperatures the relative humidity shall 
vary linearly.  
 
 (d) The performance shall correspond with the propulsive thrust available under the 
particular ambient atmospheric conditions, the particular flight condition, and the relative 
humidity specified in paragraph (c) of this section.  The available propulsive thrust shall 
correspond with engine power and/or thrust not exceeding the approved power and/or thrust less 
the installational losses and less the power and or equivalent thrust absorbed by the accessories 
and services appropriate to the particular ambient atmospheric conditions and the particular 
flight condition.  
 
4T.111 Airplane configuration, speed, power, and/or thrust; general.  
 
 (a) The airplane configuration (setting of wing and cowl flaps, air brakes, landing gear, 
propeller, etc.), denoted respectively as the takeoff, en route, approach, and landing 
configurations, shall be selected by the applicant except as otherwise prescribed.  
 
 (b) It shall be acceptable to make the airplane configurations variable with weight, altitude, 
and temperature to an extent found by the Administrator to be compatible with operating 
procedures required in accordance with paragraph (c) of this section.  
 
 (c) In determining the accelerate-stop distances, takeoff flight paths, takeoff distances, and 
landing distances, changes in the airplane’s configuration and speed, and in the power and thrust 
shall be in accordance with procedures established by the applicant for the operation of the 
airplane in service, except as otherwise prescribed.  In addition, procedures shall be established 
for the execution of balked landings and missed approaches associated with the conditions 
prescribed in sections 4T.119 and 4T.120(d), respectively.  All procedures shall comply with the 
provisions of subparagraphs (1) through (3) of this paragraph.  
 
  (1) The Administrator shall find that the procedures can be consistently executed in 
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service by crews of average skill.  
 
  (2) The procedures shall not involve methods or the use of devices which have not 
been proven to be safe and reliable.  
 
  (3) Allowance shall be made for such time delays in the execution of the procedures as 
may be reasonably expected to occur during service.  
 
4T.112 Stalling and minimum control speed.  
 
 (a) The speed VS shall denote the calibrated stilling speed or the minimum steady flight 
speed at which the airplane is controllable, in knots, with:  
 
  (1) Zero thrust at the stalling speed or engines idling and throttles closed if it is shown 
that the resultant thrust has no appreciable effect on the stalling speed;  
 
  (2) If applicable, propeller pitch controls in the position necessary for compliance with 
subparagraph (1) of this paragraph; the airplane in all other respects (flaps, landing gear, etc.) in 
the particular configuration corresponding with that in connection with which VS is being used;  
 
  (3) The weight of the airplane equal to the weight in connection with which VS is being 
used to determine compliance with a particular requirement;  
 
  (4) The c.g. in the most unfavorable position within the allowable range.  
 
 (b) The stall speed defined in this section shall be the minimum speed obtained in flight 
tests conducted in accordance with the procedure of subparagraphs (1) and (2) of this paragraph.  
 
  (1) With the airplane trimmed for straight flight at a speed chosen by the applicant, but 
not less than 1.2 VS nor greater than 1.4 VS, and from a speed sufficiently above the stalling 
speed to ensure steady conditions, the elevator control shall be applied at a rate such that the 
airplane speed reduction does not exceed 1 knot per second.  
 
  (2) During the test prescribed in subparagraph (1) of this paragraph, the flight 
characteristics provisions of section 4b.160 of part 4b of the Civil Air Regulations shall be 
complied with.  
 
 (c) The minimum control speed VMC, in terms of calibrated air speed, shall be determined 
under the conditions specified in this paragraph so that, when the critical engine is suddenly 
made inoperative at that speed, it is possible to recover control of the airplane with the engine 
still inoperative and to maintain it in straight flight at that speed, either with zero yaw or, at the 
option of the applicant, with an angle of bank not in excess of 5 degrees.  VMC shall not exceed 
1.2 VS with:  
 
  (1) Engines operating at the maximum available takeoff thrust and/or power;  
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  (2) Maximum sea level takeoff weight or such lesser weight as might be necessary to 
demonstrate VMC.  
 
  (3) The airplane in the most critical takeoff configuration existing along the flight path 
after the airplane becomes airborne, except that the landing gear is retracted;  
 
  (4) The airplane trimmed for takeoff;  
 
  (5) The airplane airborne and the ground effect negligible;  
 
  (6) The c.g. in the most unfavorable position;  
 
 (d) In demonstrating the minimum speed specified in paragraph (c) of this section, the 
rudder force required to maintain control shall not exceed 180 pounds and it shall not be 
necessary to reduce the power and/or thrust of the operative engine(s).  
 
 (e) During recovery from the maneuver specified in paragraph (c) of this section, the 
airplane shall not assume any dangerous attitude, nor shall it require exceptional skill, strength, 
or alertness on the part of the pilot to prevent a change of heading in excess of 20 degrees before 
recovery is complete.  
 
4T.113 Takeoff; general.  
 
 (a) The takeoff data in sections 4T.114 through 4T.117 shall be determined under the 
conditions of subparagraphs (1) and (2) of this paragraph.  
 
  (1) At all weights, altitudes, and ambient temperatures, within the operational limits 
established by the applicant for the airplane.  
 
  (2) In the configuration for takeoff (see sec. 4T.111).  
 
 (b) Takeoff data shall be based on a smooth, dry, hard-surfaced runway and shall be 
determined in such a manner that reproduction of the performance does not require exceptional 
skill or alertness on the part of the pilot.  In the case of seaplanes or floatplanes, the takeoff 
surface shall be smooth water, while for skiplanes it shall be smooth, dry snow.  In addition, the 
takeoff data shall include operational correction factors in accordance with subparagraphs (1) 
and (2) of this paragraph for wind and for runway gradients, within the operational limits 
established by the applicant for the airplane.  
 
  (1) Not more than 50 percent of nominal wind components along the takeoff path 
opposite to the direction of takeoff, and not less than 150 percent of nominal wind components 
along the takeoff path in the direction of takeoff.  
 
  (2) Effective runway gradients.  
 
4T.114 Takeoff speeds.  
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 (a) The critical-engine-failure speed V1 in terms of calibrated air speed, shall be selected by 
the applicant, but shall not be less than the minimum speed at which controllability by primary 
aerodynamic controls alone is demonstrated during the takeoff run to be adequate to permit 
proceeding safely with the takeoff using average piloting skill, when the critical engine is 
suddenly made inoperative.  
 
 (b) The minimum takeoff safety speed V2min, in terms of calibrated air speed, shall not be 
less than:  
 
  (1) 1.2 VS for two-engine propeller-driven airplanes and for airplanes without 
propellers which have no provisions for obtaining a significant reduction in the one-engine-
inoperative power-on stalling speed;  
 
  (2) 1.15 VS for propeller-driven airplanes having more than two engines and for 
airplanes without propellers which have provisions for obtaining a significant reduction in the 
one-engine-inoperative power-on stalling speed;  
 
  (3) 1.10 times the minimum control speed VMC.  
 
 (c) The takeoff safety speed V2, in terms of calibrated air speed, shall be selected by the 
applicant so as to permit the gradient of climb required in section 4T.120(b), but it shall not be 
less than:  
 
  (1) The speed V2min,  
 
  (2) The rotation speed VR (see paragraph (e) of this section) plus the increment in 
speed attained prior to reaching a height of 35 feet above the takeoff surface in compliance with 
section 4T.116(e).  
 
 (d) The minimum unstick speed VMU, in terms of calibrated air speed, shall be the speed at 
and above which the airplane can be made to lift off the ground and to continue the takeoff 
without displaying any hazardous characteristics.  VMU speeds shall be selected by the applicant 
for the all-engines-operating and the one-engine-inoperative conditions.  It shall be acceptable to 
establish the VMU speeds from free air data:  Provided, that these data are verified by ground 
takeoff tests.  
 
NOTE: In certain cases, ground takeoff tests might involve some takeoffs at the VMU speeds. 
 
 (e) The rotation speed VR, in terms of calibrated air speed, shall be selected by the applicant 
in compliance with the conditions of subparagraphs (1) through (4) of this paragraph.  
 

 (1) The VR, speed shall not be less than:  
 
   (i) The speed V1;  
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   (ii) A speed equal to 105 percent of VMC;  
 

  (iii) A speed which permits the attainment of the speed V2 prior to reaching a height of 
35 feet above the takeoff surface as determined in accordance with section 4T.116(e);  
 
   (iv) A speed which, if the airplane is rotated at its maximum practicable rate, will 
result in a lift-off speed VLOF (see paragraph (f) of this section) not less than 110 percent of VMU 

in the all-engines-operating condition nor less than 105 percent of VMU in the one-engine-
inoperative condition.  
 
  (2) For any given set of conditions (weight, configuration, temperature, etc.), a single 
value of VR speed obtained in accordance with this paragraph shall be used in showing 
compliance with both the one-engine-inoperative and the all-engines-operating takeoff 
provisions.  
 

 (3) It shall be shown that the one-engine-inoperative takeoff distance determined with a 
rotation speed 5 knots less than the VR speed established in accordance with subparagraphs (1) 
and (2) of this paragraph does not exceed the corresponding one-engine-inoperative takeoff 
distance determined with the established VR speed.  The determination of the takeoff distances 
shall be in accordance with section 4T.117(a) (1).  
 
  (4) It shall be demonstrated that reasonably expected variations in service from the 
takeoff procedures established by the applicant for the operation of the airplane (See sec. 
4T.111(c)) (e.g., over-rotation of the airplane, out of trim conditions) will not result in unsafe 
flight characteristics nor in marked increases in the scheduled takeoff distances established in 
accordance with section 4T.117(a).  
 
 (f) The lift-off speed VLOF, in terms of calibrated air speed, shall be the speed at which the 
airplane first becomes airborne.  
 
4T.115 Accelerate-stop distance.  
 
 (a) The accelerate-stop distance shall be the sum of the following:  
 
  (1) The distance required to accelerate the airplane from a standing start to the speed 
V1;  
 
  (2) Assuming the critical engine to fail at the speed V1, the distance required to bring 
the airplane to a full stop from the point corresponding with the speed V1.  
 
 (b) In addition to, or in lieu of, wheel brakes, the use of other braking means shall be 
acceptable in determining the accelerate-stop distance, provided that such braking means shall 
have been proven to be safe and reliable, that the manner of their employment is such that 
consistent results can be expected in service and that exceptional skill is not required to control 
the airplane.  
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 (c) The landing gear shall remain extended throughout the accelerate-stop distance.  
 
 (d) If the accelerate-stop distance is intended to include a stop-way with surface 
characteristics substantially different from those of a smooth hard-surfaced runway, the takeoff 
data shall include operational correction factors for the accelerate-stop distance to account for 
the particular surface characteristics of the stopway and the variations in such characteristics 
with seasonal weather conditions (i.e., temperature, rain, snow, ice, etc.), within the operational 
limits established by the applicant.  
 
4T.116 Takeoff path.  The takeoff path shall be considered to extend from the standing start to 
a point in the takeoff where a height of 1,500 feet above the takeoff surface is reached or to a 
point in the takeoff where the transition from the takeoff to the en route configuration is 
completed and a speed is reached at which compliance with section 4T.120(c) is shown, 
whichever point is at a higher altitude.  The conditions of paragraphs (a) through (i) of this 
section shall apply in determining the takeoff path.  
 
 (a) The takeoff path shall be based upon procedures prescribed in accordance with section 
4T.111(c).  
 
 (b) The airplane shall be accelerated on the ground to the speed V1 at which point the 
critical engine shall be made inoperative and shall remain inoperative during the remainder of 
the takeoff.  Subsequent to attaining speed V1, the airplane shall be accelerated to speed V2 

during which time it shall be permissible to initiate raising the nose gear off the ground at a 
speed not less than the rotating speed VR.  
 
 (c) Landing gear retraction shall not be initiated until the airplane becomes airborne.  
 
 (d) The slope of the airborne portion of the takeoff path shall be positive at all points.  
 
 (e) The airplane shall attain the speed V2 prior to reaching a height of 35 feet above the 
takeoff surface and shall continue at a speed as close as practical to, but not less than, V2 until a 
height of 400 feet above the takeoff surface is reached.  
 
 (f) Except for gear retraction and propeller feathering, the airplane configuration shall not 
be changed before reaching a height of 400 feet above the takeoff surface.  
 
 (g) At all points along the takeoff path starting at the point where the airplane first reaches a 
height of 400 feet above the takeoff surface, the available gradient of climb shall not be less than 
1.2 percent for two-engine airplanes, and 1.7 percent for four-engine airplanes.  
 
 (h) The takeoff path shall be determined either by a continuous demonstrated takeoff, or 
alternatively, by synthesizing from segments the complete takeoff path.  
 
 (i) If the takeoff path is determined by the segmental method the provisions of 
subparagraphs (1) through (4) of this paragraph shall be specifically applicable.  
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  (1) The segments of a segmental takeoff path shall be clearly defined and shall be 
related to the distinct changes in the configuration of the airplane in power and/or thrust and in 
speed.  
 
  (2) The weight of the airplane, the configuration, and the power and/or thrust shall be 
constant throughout each segment and shall correspond with the most critical condition 
prevailing in the particular segment.  
 
  (3) The segmental flight path shall be based on the airplane’s performance without 
ground effect.  
 
  (4) Segmental takeoff path data shall be checked by continuous demonstrated takeoffs 
up to the point where the airplane’s performance is out of ground effect and the airplane’s speed 
is stabilized, to ensure that the segmental path is conservative relative to the continuous path.  
 
NOTE: The airplane usually is considered out of ground effect when it reaches a height above the 
ground equal to the airplane’s wing span. 
 
4T.117 Takeoff distance and takeoff run.  
 
 (a) Takeoff distance.  The takeoff distance shall be the greater of the distances established 
in accordance with subparagraphs (1) and (2) of this paragraph.  
 
  (1) The horizontal distance along the takeoff path from the start of the takeoff to the 
point where the airplane attains a height of 35 feet above the takeoff surface, as determined in 
accordance with section 4T.116.  
 
  (2) A distance equal to 115 percent of the horizontal distance along the takeoff path, 
with all engines operating, from the start of the takeoff to the point where the airplane attains a 
height of 35 feet above the takeoff surface, as determined by a procedure consistent with that 
established in accordance with section 4T.116.  
 
 (b) Takeoff run.  If the takeoff distance is intended to include a clearway (see item 5 of this 
regulation), the takeoff run shall be determined and shall be the greater of the distances 
established in accordance with subparagraphs (1) and (2) of this paragraph.  
 
  (1) The horizontal distance along the takeoff path from the start of the takeoff to a 
point equidistant between the point where the speed VLOF is reached and the point where the 
airplane attains a height of 35 feet above the takeoff surface, as determined in accordance with 
section 4T.116.  
 
  (2) A distance equal to 115 percent of the horizontal distance along the takeoff path, 
with all engines operating, from the start of the takeoff to a point equidistant between the point 
where the speed VLOF is reached and the point where the airplane attains a height of 35 feet 
above the takeoff surface, as determined by a procedure consistent with that established in 
accordance with section 4T.116.  
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4T.117a  Takeoff flight path.  
 
 (a) The takeoff flight path shall be considered to begin at a height of 35 feet above the 
takeoff surface at the end of the takeoff distance as determined in accordance with section  
4T.117(a).  
 
 (b) The net takeoff flight path data shall be determined in such a manner that they represent 
the airplane’s actual takeoff flight paths, determined in accordance with section 4T.116 and with 
paragraph (a) of this section, reduced at each point by a gradient or climb equal to 0.8 percent for 
two-engine airplanes and equal to 1.0 percent for four-engine airplanes.  It shall be acceptable to 
apply the prescribed reduction in climb gradient as an equivalent reduction in the airplane’s 
acceleration along that portion of the actual takeoff flight path where the airplane is accelerated 
in level flight.  
 
4T.118 Climb; general.  Compliance shall be shown with the climb requirements of sections 
4T.119 and 4T.120 at all weights; altitudes, and ambient temperatures, within the operational 
limits established by the applicant for the airplane.  The airplane’s c.g. shall be in the most 
unfavorable position corresponding with the applicable configuration.  
 
4T.119 All-engine-operating landing climb.  In the landing configuration the steady gradient of 
climb shall not be less than 3.2 percent, with:  
 
 (a) All engines operating at the power and/or thrust which are available 8 seconds after 
initiation of movement of the power and/or thrust controls from the minimum flight idle to the 
takeoff position;  
 
 (b) A climb speed not in excess of 1.3 VS.  
 
4T.120 One-engine-inoperative climb.  
 
 (a) Takeoff; landing gear extended.  In the critical takeoff configuration existing along the 
flight path between the points where the airplane reaches the speed VLOF and where the landing 
gear is fully retracted, in accordance with section 4T.116 but without ground effect, the steady 
gradient of climb shall be positive for two-engine airplanes and shall not be less than 0.5 percent 
for four-engine airplanes, with:  
 
  (1) The critical engine inoperative, the remaining engine(s) operating at the available 
takeoff power and/or thrust existing in accordance with section 4T.116 at the time retraction of 
the airplane’s landing gear is initiated, unless subsequently a more critical power operating 
condition exists along the flight path prior to the point where the landing gear is fully retracted;  
 
  (2) The weight equal to the airplane’s weight existing in accordance with section 
4T.116 at the time retraction of the airplane’s landing gear is initiated;  
 
  (3) The speed equal to the speed VLOF.  
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 (b) Takeoff; landing gear retracted.  In the takeoff configuration existing at the point of the 
flight path where the airplane’s landing gear is fully retracted, in accordance with section 4T.116 
but without ground effect, the steady gradient of climb shall not be less than 2.4 percent for two-
engine airplanes and not less than 3.0 percent for four-engine airplanes, with:  
 
  (1) The critical engine inoperative, the remaining engine(s) operating at the available 
takeoff power and/or thrust existing in accordance with section 4T.116 at the time the landing 
gear is fully retracted, unless subsequently a more critical power operating condition exists along 
the flight path prior to the point where a height of 400 feet above the takeoff surface is reached;  
 
  (2) The weight equal to the airplane’s weight existing in accordance with section 
4T.116 at the time the airplane’s landing gear is fully retracted; 
 
  (3) The speed equal to the speed V2. 
 
 (c) Final takeoff.  In the en route configuration, the steady gradient of climb shall not be 
less than 1.2 percent for two-engine airplanes and not less than 1.7 percent for four-engine 
airplanes, at the end of the takeoff path as determined by section 4T.116, with:  
 
  (1) The critical engine inoperative, the remaining engine(s) operating at the available 
maximum continuous power and/or thrust;  
 
  (2) The weight equal to the airplane’s weight existing in accordance with section 
4T.116 at the end of the takeoff path; 
 
  (3) The speed equal to not less than 1.25 VS.  
 
 (d) Approach.  In the approach configuration corresponding with the normal all-engines-
operating procedure such that VS related to this configuration does not exceed 110 percent of the 
VS corresponding with the related landing configuration, the steady gradient of climb shall not be 
less than 2.1 percent for two-engine airplanes and not less than 2.7 percent for four-engine 
airplanes with:  
 
  (1) The critical engine inoperative, the remaining engine(s) operating at the available 
takeoff power and/or thrust;  
 
  (2) The weight equal to the maximum landing weight;  
 
  (3) A climb speed established by the applicant in connection with normal landing 
procedures, except that it shall not exceed 1.5 VS.  (see sec. 4T.111(c)).  
 
4T.121 En route flight paths.   
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With the airplane in the en route configuration, the flight paths prescribed in paragraphs (a) and 
(b) of this section shall be determined at all weights, altitudes, and ambient temperatures, within 
the operational limits established by the applicant for the airplane.  
 

(a) One engine inoperative.  The one-engine-inoperative net flight path data shall be 
determined in such a manner that they represent the airplane’s actual climb performance 
diminished by a gradient of climb equal to 1.1 percent for two-engine airplanes and 1.6 percent 
for four-engine airplanes.  It shall be acceptable to include in these data the variation of the 
airplane’s weight along the flight path to take into account the progressive consumption of fuel 
and oil by the operating engine(s).  
 
 (b) Two engines inoperative.  For airplanes with four engines, the two-engine-inoperative 
net flight path data shall be determined in such a manner that they represent the airplane’s actual 
climb performance diminished by a gradient of climb equal to 0.5 percent.  It shall be acceptable 
to include in these data the variation of the airplane’s weight along the flight path to take into 
account the progressive consumption of fuel and oil by the operating engines.  
 
 (c) Conditions.  In determining the flight paths prescribed in paragraphs (a) and (b) of this 
section, the conditions of subparagraphs (1) through (4) of this paragraph shall apply.  
 
  (1) The airplane’s c.g. shall be in the most unfavorable position.  
 
  (2) The critical engine(s) shall be inoperative, the remaining engine(s) operating at the 
available maximum continuous power and/or thrust.  
 
  (3) Means for controlling the engine cooling air supply shall be in the position which 
provides adequate cooling in the hot-day condition.  
 
  (4) The speed shall be selected by the applicant.  
 
4T.122 Landing distance.   
 
The landing distance shall be the horizontal distance required to land and to come to a complete 
stop (to a speed of approximately 3 knots in the case of seaplanes or float planes) from a point at 
a height of 50 feet above the landing surface.  Landing distances shall be determined for standard 
temperatures at all weights, altitudes, and winds, within the operational limits established by the 
applicant for the airplane.  The conditions of paragraphs (a) through (g) of this section shall 
apply.  
 
 (a) The airplane shall be in the landing configuration.  During the landing, changes in the 
airplane’s configuration, in power and/or thrust, and in speed shall be in accordance with 
procedures established by the applicant for the operation of the airplane in service.  The 
procedures shall comply with the provisions of section 4T.111(c).  
 
 (b) The landing shall be preceded by a steady gliding approach down to the 50-foot height 
with a calibrated air speed of not less than 1.3 VS.  
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 (c) The landing distance shall be based on a smooth, dry, hard-surfaced runway, and shall 
be determined in such a manner that reproduction does not require exceptional skill or alertness 
on the part of the pilot.  In the case of seaplanes or floatplanes, the landing surface shall be 
smooth water, while for skiplanes it shall be smooth, dry snow.  During landing, the airplane 
shall not exhibit excessive vertical acceleration, a tendency to bounce, nose over, ground loop, 
porpoise, or water loop.  
 
 (d) The landing distance data shall include operational correction factors for not more than 
50 percent of nominal wind components along the landing path opposite to the direction of 
landing and not less than 150 percent of nominal wind components along the landing path in the 
direction of landing.  
 
 (e) During landing, the operating pressures on the wheel braking system shall not be in 
excess of those approved by the manufacturer of the brakes, and the wheel brakes shall not be 
used in such a manner as to produce excessive wear of brakes and tires.  
 
 (f) In addition to, or in lieu of, wheel brakes, the use of other braking means shall be 
acceptable in determining the landing distance, provided such braking means shall have been 
proven to be safe and reliable, that the manner of their employment is such that consistent results 
can be expected in service, and that exceptional skill is not required to control the airplane.  
 
 (g) If the characteristics of a device (e.g., the propellers) dependent upon the operation of 
any of the engines noticeably increase the landing distance when the landing is made with the 
engine inoperative, the landing distance shall be determined with the critical engine inoperative 
unless the Administrator finds that the use of compensating means will result in a landing 
distance not greater than that attained with all engines operating.  
 
4T.123 Limitations and information.  
 
 (a) Limitations.  The performance limitations on the operation of the airplane shall be 
established in accordance with subparagraph (1) through (4) of this paragraph.  (See also sec. 
4T.743.)  
 
  (1) Takeoff weights.  The maximum takeoff weights shall be established at which 
compliance is shown with the generally applicable provisions of this regulation and with the 
takeoff climb provisions prescribed in section 4T.120 (a), (b), and (c) for altitudes and ambient 
temperatures, within the operational limits of the airplane (see subparagraph (4) of this 
paragraph).  
 
  (2) Landing weights.  The maximum landing weights shall be established at which 
compliance is shown with the generally applicable provisions of this regulation and with the 
landing and takeoff climb provisions prescribed in sections 4T.119 and 4T.120 for altitudes and 
ambient temperatures, within the operational limits of the airplane (see subparagraph (4) of this 
paragraph).  
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  (3) Accelerate-stop distance, takeoff distance, and takeoff run.  The minimum 
distances required for takeoff shall be established at which compliance is shown with the 
generally applicable provisions of this regulation and with sections 4T.115 and 4T.117(a) and 
with 4T.117(b) if the takeoff distance is intended to include a clearway, for weights, altitudes, 
temperatures, wind components, and runway gradients, within the operational limits of the 
airplane (see subparagraph (4) of this paragraph).  
 
  (4) Operational limits.  The operational limits of the airplane shall be established by 
the applicant for all variable factors required in showing compliance with this regulation (weight, 
altitude, temperature, etc.).  (See secs. 4T.113 (a)(1) and (b), 4T.115(d), 4T.118, 4T.121, and 
4T.122.)  
 
 (b) Information.  The performance information on the operation of the airplane shall be 
scheduled in compliance with the generally applicable provisions of this regulation and with 
sections 4T.117a(b), 4T.121, and 4T.122 for weights, altitudes, temperatures, wind components 
and runway gradients, as these may be applicable, within the operational limits of the airplane 
(see subparagraph (a)(4) of this section).  In addition, the performance information specified in 
subparagraphs (1) through (3) of this paragraph shall be determined by extrapolation and 
scheduled for the ranges of weights between the maximum landing and maximum takeoff 
weights established in accordance with subparagraphs (a)(1) and (a) (2) of this section.  (See also 
sec. 4T.743.)  
 
  (1) Climb in the landing configuration (see sec. 4T.119);  
 
  (2) Climb in the approach configuration (see sec. 4T.120(d));  
 
  (3) Landing distance (see sec. 4T.122).  

 A4-53 



7/23/57  AC 25-7C 
  Appendix 4 

 
Airplane Flight Manual 

 
4T.743 Performance limitations, information, and other data.  
 
 (a) Limitations.  The airplane’s performance limitations shall be given in accordance with 
section 4T.123(a).  
 
 (b) Information.  The performance information prescribed in section 4T.123(b) for the 
application of the operating rules of this regulation shall be given together with descriptions of 
the conditions, air speeds, etc., under which the data were determined.  
 
 (c) Procedures.  Procedures established in accordance with section 4T.111(c) shall be given 
to the extent such procedures are related to the limitations and information set forth in 
accordance with paragraphs (a) and (b) of this section.  Such procedures, in the form of guidance 
material, shall be included with the relevant limitations or information, as applicable.  
 
 (d) Miscellaneous.  An explanation shall be given of significant or unusual flight or ground 
handling characteristics of the airplane.  
 

3.  In lieu of sections 40.70 through 40.78, 41.27 through 41.36(d), and 42.70 through 42.83, 
of Parts 40, 41, and 42, respectively, of the Civil Air Regulations, the following shall be 
applicable: 
 

Operating Rules 
 
40T.80 Transport category airplane operating limitations.  
 
 (a) In operating any passenger-carrying transport category airplane certificated in 
accordance with the performance requirements of this regulation, the provisions of sections 
40T.80 through 40T.84 shall be complied with, unless deviations therefrom are specifically 
authorized by the Administrator on the ground that the special circumstances of a particular case 
make a literal observance of the requirements unnecessary for safety.  
 
 (b) The performance data in the AFM shall be applied in determining compliance with the 
provisions of sections 40T.81 through 40T.84.  Where conditions differ from those for which 
specific tests were made, compliance shall be determined by approved interpolation or 
computation of the effects of changes in the specific variables if such interpolations or 
computations give results substantially equaling in accuracy the results of a direct test.  
 
40T.81 Airplane’s certificate limitations.  
 
 (a) No airplane shall be taken off at a weight which exceeds the takeoff weight specified in 
the AFM for the elevation of the airport and for the ambient temperature existing at the time of 
the takeoff.  (See secs. 4T.123(a)(1) and 4T.743(a).)  
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 (b) No airplane shall be taken off at a weight such that, allowing for normal consumption of 
fuel and oil in flight to the airport of destination and to the alternate airports, the weight on 
arrival will exceed the landing weight specified in the AFM for the elevation of each of the 
airports involved and for the ambient temperatures anticipated at the time of landing.  (See secs. 
4T.123(a)(2) and 4T.743(a).)  
 
 (c) No airplane shall be taken off at a weight which exceeds the weight at which, in 
accordance with the minimum distances for takeoff scheduled in the AFM, compliance with 
subparagraphs (1) through (3) of this paragraph is shown.  These distances shall correspond with 
the elevation of the airport, the runway to be used, the effective runway gradient, and the 
ambient temperature and wind component existing at the time of takeoff.  (See secs. 4T.123(a) 
(3) and 4T.743(a).)  
 
  (1) The accelerate-stop distance shall not be greater than the length or the runway plus 
the length or the stopway if present.  
 
  (2) The takeoff distance shall not be greater than the length of the runway plus the 
length of the clearway if present, except that the length of the clearway shall not be greater than 
one-half of the length of the runway.  
 
  (3) The takeoff run shall not be greater than the length of the runway.  
 
 (d) No airplane shall be operated outside the operational limits specified in the Airplane 
Flight Manua1 (See secs. 4T.123(a)(4) and 4T.743(a).)  
 
40T.82 Takeoff obstacle clearance limitations.  No airplane shall be taken off at a weight in 
excess of that shown in the AFM to correspond with a net takeoff flight path which clears all 
obstacles either by at least a height of 35 feet vertically or by at least 200 feet horizontally within 
the airport boundaries and by at least 300 feet horizontally after passing beyond the boundaries.  
In determining the allowable deviation of the net takeoff flight path in order to avoid obstacles 
by at least the distances prescribed, it shall be assumed that the airplane is not banked before 
reaching a height of 50 feet as shown by the net takeoff flight path data in the AFM, and that a 
maximum bank thereafter does not exceed 15 degrees.  The net takeoff flight path considered 
shall be for the elevation of the airport, the effective runway gradient, and for the ambient 
temperature and wind component existing at the time of takeoff.  (See secs. 4T.123(b) and 
4T.743(b).)  
 
40T.83 En route limitations.  All airplanes shall be operated in compliance with paragraph (a) 
of this section.  In addition, no airplane shall be flown along an intended route if any place along 
the route is more than 90 minutes away from an airport at which a landing can be made in 
accordance with section 40T.84(b), assuming all engines to be operating at cruising power, 
unless compliance is shown with paragraph (b) of this section.  
 
 (a) One engine inoperative.  No airplane shall be taken off at a weight in excess of that 
which, according to the one-engine-inoperative en route net flight path data shown in the AFM, 
will permit compliance with either subparagraphs (1) or (2) of this paragraph at all points along 
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the route.  The net flight path shall have a positive slope at 1,500 feet above the airport where the 
landing is assumed to be made after the engine fails.  The net flight path used shall be for the 
ambient temperatures anticipated along the route.  (See secs. 4T.123(b) and 4T.743(b).)  
 
  (1) The slope of the net flight path shall be positive at an altitude of at least 1,000 feet 
above all terrain and obstructions along the route within 5 statute miles (4.34 nautical miles) on 
either side of the intended track.  
 
  (2) The net flight path shall be such as to permit the airplane to continue flight from the 
cruising altitude to an airport where a landing can be made in accordance with the provisions of 
section 40T.84(b), the net flight path clearing vertically by at least 2,000 feet all terrain and 
obstructions along the route within 5 statute miles (4.34 nautical miles) on either side of the 
intended track.  The provisions of subdivisions (i) through (vi) of this subparagraph shall apply.  
 
   (i) The engine shall be assumed to fail at the most critical point along the route.  
 
   (ii) The airplane shall be assumed to pass over the critical obstruction following 
engine failure at a point no closer to the critical obstruction than the nearest approved radio 
navigational fix, except that the Administrator may authorize a procedure established on a 
different basis where adequate operational safeguards are found to exist.  
 
   (iii) An approved method shall be used to account for winds which would 
otherwise adversely affect the flight path.  
 
   (iv) Fuel jettisoning shall be permitted if the Administrator finds that the operator 
has an adequate training program, proper instructions are given to the flight crew, and all other 
precautions are taken to ensure a safe procedure.  
 
   (v) The alternate airport shall be specified in the dispatch release and shall meet 
the prescribed weather minima.  
 
   (vi) The consumption of fuel and oil after the engine is assumed to fail shall be that 
which is accounted for in the net flight path data shown in the AFM.  
 
 (b) Two engines inoperative.  No airplane shall be taken off at a weight in excess of that 
which, according to the two-engine-inoperative en route net flight path data shown in the AFM, 
will permit the airplane to continue flight from the point where two engines are assumed to fail 
simultaneously to an airport where a landing can be made in accordance with the provisions of 
section 40T.84(b), the net flight path clearing vertically by at least 2,000 feet all terrain and 
obstructions along the route within 5 statute miles (4.34 nautical miles) on either side of the 
intended track.  The net flight path considered shall be for the ambient temperatures anticipated 
along the route.  The provisions of subparagraphs (1) through (5) of this paragraph shall apply.  
(See secs. 4T.123(b) and 4T.734(b).)  
 
  (1) The two engines shall be assumed to fail at the most critical point along the route.  
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  (2) The net flight path shall have a positive slope at 1,500 feet above the airport where 
the landing is assumed to be made after failure of two engines.  
 
  (3) Fuel jettisoning shall be permitted if the Administrator finds that the operator has 
an adequate training program, proper instructions are given to the flight crew, and all other 
precautions are taken to ensure a safe procedure.  
 
  (4) The airplane’s weight at the point where the two engines are assumed to fail shall 
be considered to be not less than that which would include sufficient fuel to proceed to the 
airport and to arrive there at an altitude of at least 1,500 feet directly over the landing area and 
thereafter to fly for 15 minutes at cruise power and/or thrust.  
 
  (5) The consumption of fuel and oil after the engines are assumed to fail shall be that 
which is accounted for in the net flight path data shown in the AFM.  
 
40T.84 Landing limitations.  
 
 (a) Airport of destination.  No airplane shall be taken off at a weight in excess of that 
which, in accordance with the landing distances shown in the AFM for the elevation of the 
airport of intended destination and for the wind conditions anticipated there at the time of 
landing, would permit the airplane to be brought to rest at the airport of intended destination 
within 60 percent of the effective length of the runway from a point 50 feet directly above the 
intersection of the obstruction clearance plane and the runway.  The weight of the airplane shall 
be assumed to be reduced by the weight of the fuel and oil expected to be consumed in flight to 
the airport of intended destination.  Compliance shall be shown with the conditions of 
subparagraphs (1) and (2) of this paragraph.  (See secs. 4T.123(b) and 4T.743(b).)  
 
  (1) It shall be assumed that the airplane is landed on the most favorable runway and 
direction in still air.  
 
  (2) It shall be assumed that the airplane is landed on the most suitable runway 
considering the probable wind velocity and direction and taking due account of the ground 
handling characteristics of the airplane and of other conditions (i.e., landing aids, terrain, etc.).  
If full compliance with the provisions of this subparagraph is not shown, the airplane may be 
taken off if an alternate airport is designated which permits compliance with paragraph (b) of 
this section.  
 
 (b) Alternate airport.  No airport shall be designated as an alternate airport in a dispatch 
release unless the airplane at the weight anticipated at the time of arrival at such airport can 
comply with the provisions of paragraph (a) of this section, provided that the airplane can be 
brought to rest within 70 percent of the effective length of the runway.  
 

4.  In lieu of section 43.11 of part 43 of the Civil Air Regulations the following shall be 
applicable. 
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43T.11 Transport category airplane weight limitations.  The performance data in the AFM 
shall be applied in determining compliance with the following provisions:  
 
 (a) No airplane shall be taken off at a weight which exceeds the takeoff weight specified in 
the AFM for the elevation of the airport and for the ambient temperature existing at the time of 
the takeoff.  (See secs. 4T.123(a)(1) and 4T.743(a).)  
 
 (b) No airplane shall be taken off at a weight such that, allowing for normal consumption of 
fuel and oil in flight to the airport of destination and to the alternate airports, the weight on 
arrival will exceed the landing weight specified in the AFM for the elevation of each of the 
airports involved and for the ambient temperatures anticipated at the time of landing.  (See secs. 
4T.123(a) (2) and 4T.743(a).)  
 
 (c) No airplane shall be taken off at a weight which exceeds the weight at which, in 
accordance with the minimum distances for takeoff scheduled in the AFM, compliance with 
subparagraphs (1) through (3) of this paragraph is shown.  These distances shall correspond with 
the elevation of the airport, the runway to be used, the effective runway gradient, and the 
ambient temperature and wind component existing at the time of takeoff.  (See secs. 
4T.123(a)(3) and 4T.734(a).)  
 
  (1) The accelerate-stop distance shall not be greater than the length of the runway plus 
the length of the stopway if present.  
 
  (2) The takeoff distance shall not be greater than the length of the runway plus the 
length of the clearway if present, except that the length of the clearway shall not be greater than 
one-half of the length of the runway.  
 
  (3) The takeoff run shall not be greater than the length of the runway.  
 
 (d) No airplane shall be operated outside the operational limits specified in the AFM.  (See 
secs. 4T.123(a)(4) and 4T.743(a).)  
 

5.  The following definitions shall apply: 
 
(a) Clearway.  A clearway is an area beyond the runway, not less than 500 feet wide, centrally 
located about the extended centerline of the runway, and under the control of the airport 
authorities.  The clearway is expressed in terms of a clearway plane, extending from the end of 
the runway with an upward slope not exceeding 1.25 percent, above which no object nor any 
portion of the terrain protrudes, except that threshold lights may protrude above the plane if their 
height above the end of the runway is not greater than 26 inches and if they are located to each 
side of the runway. 
 
NOTE: For the purpose of establishing takeoff distances and takeoff runs, in accordance with 
section 4T.117 of this regulation, the clearway plane is considered to be the takeoff surface. 
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 (b) Stopway.  A stopway is an area beyond the runway, not less in width than the width of 
the runway, centrally located about the extended centerline of the runway, and designated by the 
airport authorities for use in decelerating the airplane during an aborted takeoff: To be 
considered as such, a stopway must be capable of supporting the airplane during an aborted 
takeoff without inducing structural damage to the airplane.  (See also sec. 4T.115(d) of this 
regulation.)  
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Appendix 5 
 

FAA Handling Qualities Rating Method (HQRM) 
 
1. Explanation.   
 
Many of the stability and control requirements of part 25 are inadequate or unsuitable safety 
standards for airplanes with electronic flight control systems (EFCS) because these systems use 
control laws to define or augment the airplane’s natural handling qualities.  As a result, the 
HQRM was developed to provide a systematic way to determine appropriate minimum handling 
qualities requirements that take into account the features, characteristics, and limitations of an 
EFCS.  The HQRM defines the minimum acceptable handling characteristics as a function of the 
atmospheric conditions, flight envelope conditions, piloting task, and probability of the 
particular failure condition being evaluated.  The pilot rating levels used in this HQRM may also 
be useful in evaluating flying qualities for showing compliance with existing part 25 
requirements where the airplane must be shown to be capable of continued safe flight and 
landing.  Unless otherwise specified in a special condition, the HQRM does not replace or 
override any of the systems and equipment requirements of §§ 25.1301 and 25.1309 or the 
control system requirements of §§ 25.671 and 25.672. 
 
2. Procedures.   
 
The HQRM is a pilot task-oriented approach for evaluating airplane handling qualities. 
 
 a. The HQRM uses a probability of occurrence versus safety effect philosophy in relating 
the minimum acceptable handling qualities to the probability of being in a particular portion of 
the airplane’s flight envelope (referred to as Xe), the probability of encountering certain 
atmospheric disturbance levels (referred to as Xa), and the probability of a specific flight control 
failure state (referred to as Xc).  The overall process used for the HQRM is shown in Figure 1.  
 
 b. Handling qualities to perform a specified pilot task for a particular flight condition are 
expressed in terms of one of three levels: Satisfactory (SAT), Adequate (ADQ), and Controllable 
(CON).  A description of these handling qualities ratings is presented in Figure 2 on the 
following page, along with the equivalent Cooper-Harper and Military Standard ratings for 
comparison.  The handling qualities rating will be used to determine if the handling qualities of a 
specific test condition are acceptable, considering the probabilities of the failure state being 
evaluated (Xc), being in a particular portion of the flight envelope (Xe), and the atmospheric 
disturbance level (Xa). 
 
 c. The HQRM should be used to evaluate airplane handling qualities while performing 
typical static and dynamic maneuvers.  A sample list of such tasks is presented in Figure 3.  Task 
performance criteria should be defined for each identified task.  From a test execution 
perspective, test tasks with criteria are defined (which may include a failure state, region of the 
flight envelope, and/or atmospheric condition), the tasks are flown and ratings are determined 
(from the HQRM rating scale shown in Figure 2) for each task as flown.  If desired, the Cooper 
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Harper Handling Qualities Rating Scale can be used along with Figure 2 to determine HQRM 
ratings for a given task. 

 
Figure 1.  Overall HQRM Process 

 

.

HANDLING QUALITIES REQUIREMENTS
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Xa
ATMOSPHERIC 
DISTURBANCE

Xc
FAILURE 

CONDITIONS

Xe
FLIGHT 

ENVELOPES

Xc * Xa * Xe
COMBINATION 

METHODOLOGY

PILOT TASKS

HQ RATING 
CATEGORIES

FIND COMPLIANCE

PROBABILITY
RELATIONSHIPS

 
 

Figure 2.  Handling Qualities Ratings 
 

FAA  COMPARISON 
HQ FAA DEFINITION CHR* MIL STANDARD 

RATING   LEVEL QUAL 
Satisfactory 

(SAT) 
Full performance criteria met with 
routine pilot effort and attention. 

 
1-3 

 

 
1 

 
SAT 

 
Adequate 
(ADQ) 

Adequate for continued safe flight 
and landing.  Full or specified 

reduced performance met, but with 
heightened pilot effort and attention. 

 
4-6 

 
2 

 
ACCEPT 

 
 

Controllable 
(CON) 

Inadequate for continued safe flight 
and landing, but controllable for 
return to a safe flight condition, a 

safe flight envelope, and/or allows a 
reconfiguration that provides HQ that 

are at least ADEQUATE. 

 
 

7-8 

 
 
3 

 
 

CON 

 
 * NOTE: Cooper-Harper Rating 
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Figure 3. Sample Tasks for Evaluating Airplane Handling Qualities 

 
 
A. Trim & Unattended Operation. 
 
Characteristics of the airplane to stay at or depart from an initial trim or unaccelerated condition. 
 
      -- Dynamic and steady-state flight path response to pulse input (all 3 axes) 
 
      -- Dynamic and steady-state flight path response to atmospheric disturbance 
 
      -- Spiral stability (e.g., release controls at 40 bank) 
 
B. Large Amplitude Maneuvering. 
 
Generally, these are open-loop maneuvers in which the pilot attempts a significant change in 
airplane path, speed, or attitude in order to evaluate safe airplane capability that are beyond those 
expected in normal operational service.  Maneuvers may be initiated outside the Normal Flight 
Envelope and transition flight envelopes.  Most of these maneuvers are representative of 
airworthiness stability and control tests. 
 

-- Wind-up turn or symmetric pull-up/push-over 
-- Slow-down turn at fixed g or on AOA or g-limiter 
-- Stall or AOA-limiter approach 

Pitch/Longitudinal 

-- Push-pull off trim speed 
 
Roll -- Rapid bank-to-bank roll 
 

-- Sudden heading change Yaw 
-- Constant heading sideslip 

 
-- Pitch/roll upset recover 
-- Emergency descent 
-- Climbing/diving turn 
-- Takeoff/land windshear escape maneuver 
-- Takeoff/land windshear escape maneuver-- Go around/power 
or thrust application from low speed 
-- Arrest of high sink rate, at touchdown or level-off altitude 
-- Collision avoidance roll/pull 

Operational 

-- Takeoff and landing flare with underspeed or high crosswind 
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Figure 3.  Sample Tasks for Evaluating Airplane Handling Qualities (continued) 
 
C.  Closed-Loop Precision Regulation of Flight Path 
Generally, these are tightly-bounded, pilot closed-loop tasks expected to be performed in routine 
commercial flight.  These controlling tasks are almost exclusively within the Normal Flight 
Envelope, or not far outside the NFE boundary. 
      -- ILS and precision touchdown, various atmospheric disturbance and initial offset. 
      -- Formation flying (as simulator for maneuver tracking). 

-- Takeoff 
-- Climb 
-- Cruise 
-- Descent 
-- Hold 
-- Configuration changes/power or thrust changes 

SPD/ALT/HDG tracking, in various 
atmospheric disturbance and 
cockpit display status, for: 

-- Transition between aforementioned 
 
 d. Figure 4 provides guidance for determining the probability of occurrence associated 
with being in a particular portion of the flight envelope (Xe), in a particular atmospheric 
disturbance level (Xa), and with a particular flight control failure state (Xc).  It also describes 
how the flight envelope probability (Xe) should be modified for interrelationships with the 
atmospheric condition. 

Figure 4. Probability of Occurrence Guidelines 
 
A.  Flight Envelope (Xe) 
 Probability of 

occurrence (at flight 
envelope boundary) 

Normal Flight 
Envelope 

Generally associated with routine operational and/or 
prescribed conditions, either all engines operating or 
one engine inoperative.  

 
          100 

Operational 
Flight Envelope 

Generally associated with warning onset; outside 
the normal flight envelope. 

 
          10-3 

Limit Flight 
Envelope 

Generally associated with airplane design limits or 
EFCS protection limits.  

 
          10-5 

Refer to this Figure and Figures 5 and 6 for more detail on determining which flight envelope is 
applicable. 
 
It may be necessary to consider several of the pertinent flight parameters together to determine 
which flight envelope a given flight condition is in.  For the more influential flight parameters, 
such as angle-of-attack (AOA), speed, and load factor normal to the flight path (Nz), the choice 
of which flight envelope a condition is in may be determined by as few as one of the parameter 
values.  Since the flight envelopes cover ranges of parameters (e.g., for Flaps UP, Nz in the LFE 
can be from 1.6 to 2.5), the above target probabilities for OFE and LFE might vary slightly 
depending on the expected airplane behavior and the assigned task. 
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Figure 4.  Probability of Occurrence Guidelines (continued) 
 
B.  Atmospheric Disturbance Level 
 Probability of 

occurrence (at flight 
envelope boundary) 

Light: Turbulence that momentarily causes 
slight, erratic changes in altitude and/ or attitude (pitch, 
roll, yaw).  Crosswinds up to10 kts. 

 
        100 

Moderate: Turbulence that is similar to light turbulence, 
but of greater intensity.  Changes in altitude and/or 
attitude occur.  Usually causes variations in indicated 
airspeed.  Crosswinds up to 25 kts. 

 
        10-3 

Severe: Turbulence that causes large, abrupt 
deviations in altitude and/or attitude.  Usually 
causes large variations in indicated airspeeds. 
Crosswinds substantially in excess of the minimum 
required crosswind to be demonstrated safe for takeoff 
and landing. 

 
        10-5 

 
C.  Flight Control System Failure State 
 
 Probability of occurrence (at flight envelope boundary) 

 
Normal Operation:           100 

 

Probable Failures:           100 - 10-5 

 

Improbable Failures:           10-5 - 10-9 

 
D.  Modifying  The Flight Envelope Probability for Interrelationships With Atmospheric 
Conditions 
 
The above probability of occurrence values apply when considered separately.  When obvious 
interrelationships exist due to the design or the intended or expected operation of the airplane, 
the way to address this within HQRM is to modify the flight envelope probability value.  For 
example, a severe windshear event may result in a flight envelope probability of 100, not 10-3 or 
10-5 as shown above for the OFE or LFE, since the operational procedure for escape would be to 
pull toward the AOA limit in windshear.  Similarly, an airplane may experience overspeed, from 
VMO cruise, into the OFE due to a gust, in which case the modified flight envelope probability 
would be 100, not 10-3.  This probability adjustment concept would also apply to EFCS failure 
cases where, for example, loss of warnings or exposure to reduced airplane stability might 
contribute to excursions outside the normal flight envelope (NFE) or OFE, in which case the 
flight envelope probability should be appropriately increased. 
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 e. Three different flight envelopes (or portions of the airplane’s flight envelope), called the 
normal, operational, and limit flight envelopes have been defined as a function of various flight 
parameters.  These flight envelopes are shown for flaps up and flaps down configurations in 
figures 5 and 6, respectively. 
 

Figure 5.  Flaps UP Flight Envelopes 
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Figure 6.  Flaps DOWN Flight Envelopes 
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 f. Figure 7 presents the method for combining the various flight condition parameter 
probabilities to determine the minimum acceptable handling qualities rating for each 
combination of these parameters.  This method is shown graphically in Figure 8. 
 
 

Figure 7.  Combining Values 
 
 
 
A.  Analyze Failures/Determine Flight Control System Failure Probability (Xc) 
 
 --  Predicted failure rates/check failure co-dependence 
 --  Equipment Inoperative Dispatch under MEL 
 --  Service Difficulty Records (continuing airworthiness) 
 
B.  Determine Flight Envelope Probabilities (Xe) and Atmospheric Probabilities (Xa) for 
the flight condition 
 
C.  Modify the flight envelope probability if inter-related with the atmospheric condition 
(See Figure 4, Section D.) 
 
D. Repeat process to identify all cases where Xc * Xa * Xe   10 -9 
 
E.  Determine: “Flight Condition” (Xc * Xe)     
 
 --  PROBABLE FLIGHT CONDITION:          10-5  (Xc * Xe) < 0  
 --  IMPROBABLE FLIGHT CONDITION:     10-9  (Xc * Xe) < 10-5 
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Figure 8.  Probability Guidelines to Determine HQ Requirements 
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A5-10 

 
 g. Figure 9 shows the minimum acceptable FAA handling qualities rating for a given flight 
condition, defined as a combination of the flight envelope conditions and the level of 
atmospheric disturbance, relative to the probability of the failure condition being evaluated.  
Figure 9 is not meant to imply that every atmospheric disturbance level and every flight 
envelope combination must be tested.  It simply shows the minimum acceptable handling 
qualities rating for a handling qualities task conducted in a specific environmental state (i.e., 
atmospheric disturbance level), in a specific segment of the flight envelope, and in a specific 
system failure state. 
 

Figure 9.  Minimum HQ Requirements 
 
 

 ATMOSPHERIC DISTURBANCE (Xa) 
FLIGHT LIGHT MODERATE SEVERE 

CONDITION FLIGHT ENVELOPE (Xe) 
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Correction Of Air Minimum Control Speed To Standard Conditions 

 
The following analysis presents three methods of correcting a flight test derived value of air 
minimum control speed to standard conditions.  These methods are applicable only to rudder 
deflection limited VMCA, for either jet or propeller driven airplanes.  The effect of banking into 
the operating engine is accounted for, and the method will work with either fixed pitch or 
constant speed propellers, including the effects of windmilling drag.  For rudder pedal force 
limited VMCA, see Appendix 7. 
 

Theoretical Basis 
 
Given the static lateral/directional equations of motion for straight line, unaccelerated flight: 
 

Fy   Cy
  ay a

C 

 Cy r r  = CL ·  sin  

 

Mx  Cl  Cl aa
 Cl r r   

 

Mz  Cn
 Cn aa

 Cn r r Cna   

 
 where: 
 

 = CL

295
2



W

V Se

    = Cna

295
2

 
 
F l

V S b
na e

e

 

     
 
  W = weight - lbs 
 
  Ve = equivalent airspeed - kts 
 
  S = wing area - ft2 

 

  Fna = asymmetric net thrust - lbs 
 
  Fna  = (Fn + Dw) for engine inoperative 
     
  Fna  = (Fn + Fi) for engine at idle 
 
  Fn  = net thrust of the operating engine - lbs 
 
  Fi  = idle engine net thrust - lbs 
 
  Dw = windmill drag - lbs 
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  le = distance from aircraft center line to engine thrust line - ft 
 
  b  = wingspan - ft 
 

Constant Cn Method 
 
For the case where full rudder deflection is achieved, r is a constant, and the system of 
equations can be resolved to an identity which shows that Cna is a linear function of CLsin . 
 
  Cna  =  A·CL  sin + B (4) 
 
If it is assumed that test and standard day VMCA occur at the same angle-of-attack and bank 
angle, the asymmetric yawing moment coefficient will be constant, and VMCA can be corrected to 
standard conditions by the relationship: 
 

  V =  · MCAs
VMCAt

F

F
na

na

s

t

   for Turbojets 

 

  V =  · MCAs
VMCAt

THP

THP
s s

t t



















1

3

 for Propeller driven 

 
 where: 
 
  THPs   =  Maximum AFM scheduled Brake/Shaft horsepower 
          multiplied by standard day propeller efficiency. 
 
  THPt   =   Test day brake/shaft horsepower where VMCA  was 
          achieved multiplied by test day propeller efficiency. 
 

   s   =   Atmospheric density ratio at standard conditions. 

 

   t   =   Atmospheric density ratio at test conditions. 

 
Windmilling shaft horsepower is not considered, because the current part 25 takeoff 
requirements for propeller driven airplanes result in such large performance penalties with a 
windmilling propeller that all part 25 turboprops to date have had autofeather installed.  
 
Since both net thrust and shaft horsepower vary with speed, use of these equations will require 
an iterative solution.  Because this constant Cn method does not consider the effect on VMCA due 
to variations in bank angle, weight, sideslip angle, or adverse yaw, its use is limited to 
corrections of 5 percent or less in asymmetric net thrust or power. 

 A6-2 



10/16/12  AC 25-7C 
  Appendix 6 

 
For corrections beyond 5 percent, the relationship shown in equation (4) should be used, and 
enough flight test data should be obtained to define the correlation between Cna and CLsin. 
 

Graphical Method 
 
In theory these data could be obtained by varying any combination of asymmetric power or 
thrust, airspeed, weight, and bank angle that would provide a representative variable set.  
However, since VMCA and stall speed are nearly coincident for most airplanes, there are some 
severe constraints on most of the variables.  Typically, any reduction in maximum asymmetric 
power or thrust will cause VMCA to decrease below stall speed, and any increase in weight will 
cause stall speed to increase above VMCA; therefore, the only parameter that can reasonably be 
varied is bank angle. 
 
To maximize the spread between stall and minimum control speed, VMCA tests are normally done 
at the lightest possible weight, at the maximum allowable asymmetric power or thrust (even with 
a short duration overboost, if the engine manufacturer will agree).  At typical test altitudes 
(2000-3000 feet) and prototype gross weights, it will usually still not be possible to define VMCA 
with the full 5°  bank, because of stall buffet. 
 
To obtain the data necessary for extrapolation to the 5° bank limit, and to maximum asymmetric 
power or thrust, testing at three bank angles is required for the definition of the Cna vs CL sin 
relationship.  These data should be obtained by shutting down the critical engine (normally the 
left), setting maximum allowable power or thrust on the operative engine, and slowing down 
while maintaining constant heading until full rudder deflection is achieved.  The first point, a 
wings level condition, is easy to set up, and results in a speed well above stall buffet.  A second 
point, at zero sideslip, will be achieved at approximately 2° - 3° bank (flown with a yaw string, 
or instrumented sideslip vane) and will provide an intermediate speed, still above buffet.  The 
third data point is flown with as much bank angle that can be used without excessive buffeting 
(no more than would be accepted as the minimum level of stall warning).  If necessary, an 
additional point can be obtained by banking 2° - 3° into the inoperative engine. 
 
To use this method, instrumentation is necessary for the determination of net thrust/shaft 
horsepower, and an accurate calibrated airspeed system is required, as well as engine/propeller 
charts for windmill drag, charts for propeller efficiency, and the ability to measure bank angle to 
at least a tenth of a degree. 
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Data obtained using this method with a typical business jet and a large jet transport are shown in 
the following two graphs: 
 

2-ENGINE BUSINESS JET
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4-ENGINE TRANSPORT
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These plots represent the capability of the airframe to produce yawing moment by a combination 
of rudder deflection (full, in this case), and the sideslip which results from the bank angle.  In 
order to determine the limiting condition for VMCA, it is necessary to know what the applied 
yawing moment is (due to the engine-out moments), and to plot the applied moments on the 
same plot, in a similar form.  It is possible to do this by choosing a gross weight to be used to 
calculate CL, and since standard bank angle will be 5°, the only remaining variable in CLsin is 
Ve.  By choosing the appropriate values of Fn available versus Ve, a plot of Cna versus CLsin can 
be made which represents the applied yawing moments.  If the weight chosen represents some 
standard minimum weight, and the available net power or thrust values represent the maximum 
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allowable power or thrust scheduled in the AFM, the intersection point of the airframe curve and 
the engine curve will be the desired standard day values which can be used to calculate VMCA. 
 
As an example, the following values of net thrust plus windmill drag have been extracted from a 
typical corporate jet engine spec.  The data represent a maximum thrust engine, and have been 
corrected for ram drag and minimum accessory bleed and electrical load.  The CLsin values are 
based on a gross weight of 9000 lbs. 
 

Ve Fna Cna CLsin 
70 2,846 0.079 0.204 
90 2,798 0.047 0.123 
110 2,764 0.031 0.082 
130 2,737 0.022 0.059 
150 2,710 0.016 0.044 

 
 
Plotting both the airframe and engine yawing moment curves on the same graph looks like: 
 

Airframe
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Engine
.124
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The intersection of the airframe and the engine curve shows values of: 
 
  Cna = 0.048  CLsin = 0.124 
 
Since the engine Cn curve was based on W = 9000 lbs, the standard day value of VMCA can be 
determined from: 
 

  CLsin= 0.124 = 
295 W

V Se
2



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0.124

90000.1108
V 2

e


  

 
  VMCA  = 89.7 KEAS 
 
If the airframe data is obtained from flight test, there are no assumptions or simplifications, and 
the value of VMCA derived from this method includes all the effects of bank angle, sideslip, 
adverse yaw, angle-of-attack, etc.  Also, since the standard day value of Cna will always be less 
than the test value, no extrapolation is required, and there is no restriction on the value of 
standard day power or thrust that may be used. 
 

Equation Method 
 
A single test day value of VMCA  can also be corrected to standard conditions (using all the 
appropriate variables) without using this graphical method, provided either the slope of the Cna 
vs CLsin relationship is known (from wind tunnel, or analytical estimates), or one is willing to 
use a default (conservative) value.  Power or thrust extrapolation using slope values not based on 
flight test is limited to 10 percent of the test day power or thrust.  The following analysis shows 
the derivation of this single-point correction equation: 
 
If the test day engine Cna curve was added to the previous plot, it would be possible to see how 
far, and in what direction, the correction from test to standard day was made.  Assuming that a 
single value of VMCA was determined at 3000 feet at a weight of 9000 lbs, a test day engine Cna 
curve could be plotted using the same technique used for the standard day curve, except 
substituting the 3000 ft thrust values from the engine spec: 
 

Ve Fna Cna CLsin 
70 2,634 0.073 0.204 
90 2,589 0.043 0.123 
110 2,554 0.029 0.082 
130 2,528 0.02 0.059 
150 2,510 0.015 0.044 
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The following Cna vs CLsin plot shows the airframe curve, the standard day engine curve, and 
the test day curve: 
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From the airframe/engine curve intersections: 
 
  Cnt = 0.052   Cns = 0.048 
 
  CLsint = 0.147  CLsins = 0.124 
 
  V = 82.4 KEAS = 89.7 KEAS MCAt

VMCAs

 
This is a thrust correction of approximately 8 percent.  If the constant Cn method had been used, 
the test value of .052 would have applied, and the corresponding would have been 85.7 

KEAS, an error of 4 knots (5 percent) in the non-conservative direction. 

VMCAt

 
Noting that the correction from test day to standard day is along the Cn vs CLsin curve, which is 
a straight line, and denoting the slope of the airframe curve as K  the intersection of the standard 
day thrust line with the airframe curve as Cns and CLsins, and the intersection of the test day 
thrust line with the airframe curve as Cnt and CLsint, the following equation can be derived: 
 
Given the point-slope form of a straight line, 
 
  Y2 - Y1 = m(X2 - X1) 
 
 
Correspondingly, 
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  Cns - Cnt  = K (CLsins - CLsint )  

 
  Cns - K   CLsins  = Cnt - K CLsint 

 

  
F l

q S b
na e

s
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 Substituting q = 
V

295
e
2

 and then multiplying through by 
V S

295
e
2

S

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 and finally, 
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   for Turbojets 

 
   

  =   VMCAs
VMCAt

326
SHP

V

l

b
K W sin

326
SHP

V

l

b
K W sin

S S S

MCA

e
s s

t t t

MCAt

e
t t

s


 

   

   





















 


 






1

2

  for Turboprops 

 
In the simplified form of the lateral directional equations, K is               which is the 
directional static margin.  The value of K typically varies from approximately 0.14 to 0.19, 
depending on the lateral/directional characteristics of the airplane being tested.  As with the 
graphical method, if K is determined by flight test, power or thrust corrections to VMCA are 
based on an interpolation of flight test defined airframe capability, and there is no limit on the 
amount of the power or thrust correction to VMCA.  A somewhat conservative default value of 
0.20 for K may be used if flight test data is not available; however, in this case, any power or 
thrust extrapolation is limited to 10 percent of the test day power or thrust.  To assure that 
corrections for bank angle and weight do not result in standard day VMCA values at or below stall 
speed, the corrections made by either the graphical or equation method should not result in a 
VMCA which is based on a CLsin that is greater than C sin5. LMAX

C Cn y 
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Rudder Pedal Force-Limited Air Minimum Control Speed 

 
 
The following analysis presents one method of addressing rudder pedal force limited air 
minimum control speed.  This method is applicable to either jet or propeller driven airplanes.  
The effect of banking into the operating engine is accounted for, and the method will work with 
either fixed pitch or constant speed propellers, including the effects of windmilling drag.  For 
rudder deflection limited VMCA, see Appendix 6. 
 
Given the static lateral/directional equations of motion for straight line, unaccelerated flight: 
 
 = 0  Fy 


yC + C y aa

  + Cy rr
 = CL ·  sin 

 
 
  0 Mx 


l +C al a

C 


 Cl r r
  = 0   

 
 
 Mz = 0  Cn

 + Cn aa
 Cn rr

  = C    na

 
For a reversible control system, rudder force versus deflection is: 
 
  FR = GR · q · SR · cR · · R Ch R

 

 and R  = kR  · 
F

V
R

e
2

 

 
Substituting for R  in equations (1) through (3), and solving, results in an identity of the form: 
 
  FR  =  A·Fna  - B·Wsin  
 
All the airspeed terms cancel, indicating that the engine-out rudder force required for straight 
flight is not a function of airspeed, but only of asymmetric power or thrust, weight, and bank 
angle.  If asymmetric power or thrust did not vary with airspeed, it would be possible to stabilize 
at any airspeed with the same rudder force.  At higher speeds, less rudder deflection would be 
required (varies inversely with Ve

2), but the same force would be required (varies directly with 
Ve

2).  When a force limited VMCA is determined during flight test, the variation in rudder force 
with airspeed results solely from the change in net power or thrust with speed, and if an airspeed 
(i.e., power or thrust level) is reached at which the rudder force is 150 lbs, there is no way to 
correct this force limited VMCA to any other power or thrust level.  Therefore, if VMCA is rudder 
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pedal force limited, takeoff power or thrust at all flight conditions should be limited to the test 
value of asymmetric power or thrust. 
 
In some cases, it is possible to achieve full rudder deflection at the test altitude without reaching 
a pedal force limit, but with the higher power or thrust at standard conditions, a force limit would 
exist.  To preclude missing this crossover effect, the following analysis should be performed 
whenever test day rudder pedal forces are greater than 90 percent of the part 25 limit (i.e., 135 
lbs after amendment 25-42; 162 lbs prior to amendment 25-42). 
 
1.  At any convenient airspeed (typically 1.13 VSR with minimum takeoff flaps), shut down the 
critical engine, and leave it windmilling (propeller feathered if autofeather is required), apply 
maximum available power/thrust to the operating engine, and while maintaining constant 
heading, vary the bank angle from 10° to less than 5° in approximately 2°-3°  increments, noting 
the rudder force at each stabilized bank angle. 
 
2.  Plot the rudder force vs Wsin for each of the test points. 
 
3.  Calculate Wssin 5°, where Ws is either the average test weight, or the lightest weight 
scheduled in the AFM, and define standard day rudder force (FRs) as the intersection of this value 
of Wsin and the curve from step (2).  For example: 
 
  F = 2600 lbs  V = 1.13 VSR  Ws = 9000 lbs nat

FR=166 lbs

Wsin = 
784 lbs
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4. Determine the maximum allowable asymmetric thrust from the relationship: 
 

   F F na namax t

150

FRs











*           *(
180

FRs











   prior to amendment 25-42) 

 

 Assuming a 180 lb force limit:  
166

180
2600F

maxna  2820 lbs 

 
5. Plot the maximum scheduled AFM thrust vs airspeed, and determine VMCA at the 
intersection of this curve and F : namax
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If the force limited VMCA value is high enough to adversely impact the takeoff speed schedule, it 
can be reduced to an acceptable value by derating takeoff power or thrust.  For example, if the 
standard day rudder force (FRs) was 140 lbs on an amendment 25-42 airplane, the maximum 
allowable asymmetric takeoff thrust would be: 
 

  F 2600
150

140namax
   2686 lbs 
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Using the same maximum asymmetric thrust available vs airspeed as before: 
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Because of the shallow thrust lapse rate with airspeed, the force limited VMCA for these 
conditions would be 172 knots, which is obviously unacceptable.  To reduce this value back to 
80 knots (or any other speed), takeoff thrust should be derated to a level which provides a 
maximum asymmetric thrust value of  F          at the desired VMCA  (80 knots in this example).  
The amount of derate required can be determined from the following plot: 

na max 

 

Maximum 
Thrust

Derated 
Thrust (5%)

8
0

 K
E

A
S

2686 lbs

2400

2500

2600

2700

2800

2900

3000

50 100 150 200

Ve - kts

F
na

 -
 lb

s

 
For a given weight and bank angle, rudder pedal force is determined solely by asymmetric thrust; 
consequently, takeoff thrust should be limited to a value which results in a pedal force no greater 
than 150 lbs (180 lbs prior to amendment 25-42). 
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